Menu Close

if-7-1-1-6-1-2-5-1-3-4-




Question Number 185472 by liuxinnan last updated on 22/Jan/23
if ω^7 =1  (1/(ω+ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))=?
ifω7=11ω+ω6+1ω2+ω5+1ω3+ω4=?
Commented by Shrinava last updated on 23/Jan/23
Give:   ω^7  = 1  ⇒  ω = 1  ▲ ω^(3p+q) =ω^q   ⇒ ω^2 =ω^3 =ω^4 =ω^5 =ω^6 =1  ⇒ (1/(ω+ω^6 )) + (1/(ω^2 +ω^5 )) + (1/(ω^3 +ω^4 )) = (1/2) + (1/2) + (1/2) = (3/2) = 1,5 ✓
Give:ω7=1ω=1ω3p+q=ωqω2=ω3=ω4=ω5=ω6=11ω+ω6+1ω2+ω5+1ω3+ω4=12+12+12=32=1,5
Commented by Rasheed.Sindhi last updated on 24/Jan/23
Here ω isn′t cube root of unity.  (It′s seventh root of unity.)  So   ω^(3p+q) ≠ω^q   (But ω^(7p+q) =ω^q )  Only for ω=1 your solution   is correct. But ω has six other   values also.
Hereωisntcuberootofunity.(Itsseventhrootofunity.)Soω3p+qωq(Butω7p+q=ωq)Onlyforω=1yoursolutioniscorrect.Butωhassixothervaluesalso.
Answered by mr W last updated on 22/Jan/23
ω^7 =1  ⇒ω=e^((2kπi)/7)  (k=0,1,2,...,6)  ω+(1/ω)=2 cos ((2kπ)/7)  ω^2 +(1/ω^2 )=2 cos ((4kπ)/7)  ω^3 +(1/ω^3 )=2 cos ((6kπ)/7)  (1/(ω+ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =(1/(ω+(1/ω)))+(1/(ω^2 +(1/ω^2 )))+(1/(ω^3 +(1/ω^3 )))  =(1/2)((1/(cos ((2kπ)/7)))+(1/(cos ((4kπ)/7)))+(1/(cos ((6kπ)/7))))= { (((3/2), k=0)),((−2, k=1,2,...,6)) :}
ω7=1ω=e2kπi7(k=0,1,2,,6)ω+1ω=2cos2kπ7ω2+1ω2=2cos4kπ7ω3+1ω3=2cos6kπ71ω+ω6+1ω2+ω5+1ω3+ω4=1ω+1ω+1ω2+1ω2+1ω3+1ω3=12(1cos2kπ7+1cos4kπ7+1cos6kπ7)={32,k=02,k=1,2,,6
Commented by liuxinnan last updated on 23/Jan/23
I cant understand the last step
Icantunderstandthelaststep
Answered by Rasheed.Sindhi last updated on 22/Jan/23
 { ((ω^7 =1)),((1+ω+ω^2 +...+ω^6 =0)) :}  ▶(1/(ω+ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =((ω^2 +ω^5 +ω+ω^6 )/((ω+ω^6 )(ω^2 +ω^5 )))+(1/(ω^3 +ω^4 ))  =((−1−ω^3 −ω^4 )/(ω^3 +ω^6 +ω^8 +ω^(11) ))+(1/(ω^3 +ω^4 ))  =((−1−ω^3 −ω^4 )/(ω^3 +ω^6 +ω+ω^4 ))+(1/(ω^3 +ω^4 ))  =((−1−ω^3 −ω^4 )/(−1−ω^2 −ω^5 ))+(1/(ω^3 +ω^4 ))  =((1+ω^3 +ω^4 )/(1+ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =((1(ω^3 +ω^4 )+(ω^3 +ω^4 )^2 +1+ω^2 +ω^5 )/(ω^3 +ω^4 +ω^5 +ω^6 +ω^8 +ω^9 ))  =((ω^3 +ω^4 +ω^6 +2ω^7 +ω^8 +1+ω^2 +ω^5 )/(ω^3 +ω^4 +ω^5 +ω^6 +ω+ω^2 ))  =((ω^3 +ω^4 +ω^6 +2+ω+1+ω^2 +ω^5 )/(−1))  =−(2+0)=−2
{ω7=11+ω+ω2++ω6=01ω+ω6+1ω2+ω5+1ω3+ω4=ω2+ω5+ω+ω6(ω+ω6)(ω2+ω5)+1ω3+ω4=1ω3ω4ω3+ω6+ω8+ω11+1ω3+ω4=1ω3ω4ω3+ω6+ω+ω4+1ω3+ω4=1ω3ω41ω2ω5+1ω3+ω4=1+ω3+ω41+ω2+ω5+1ω3+ω4=1(ω3+ω4)+(ω3+ω4)2+1+ω2+ω5ω3+ω4+ω5+ω6+ω8+ω9=ω3+ω4+ω6+2ω7+ω8+1+ω2+ω5ω3+ω4+ω5+ω6+ω+ω2=ω3+ω4+ω6+2+ω+1+ω2+ω51=(2+0)=2
Answered by Rasheed.Sindhi last updated on 22/Jan/23
 { ((ω^7 =1)),((1+ω+ω^2 +...+ω^6 =0)) :}  ▶(1/(ω+ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =(ω/(ω^2 +ω^7 ))+(ω^2 /(ω^4 +ω^7 ))+(ω^3 /(ω^6 +ω^7 ))  =(ω/(1+ω^2 ))+(ω^2 /(1+ω^4 ))+(ω^3 /(1+ω^6 ))  =((1+ω^4 +1+ω^2 )/(1+ω^4 +ω^2 +ω^6 ))−1+1+(ω^3 /(1+ω^6 ))  =((1−ω^6 )/(1+ω^4 +ω^2 +ω^6 ))+1+(ω^3 /(1+ω^6 ))  =((1−ω^6 )/(−ω−ω^3 −ω^5 ))+(ω^3 /(1+ω^6 ))+1  =((ω^6 −1)/(ω+ω^3 +ω^5 ))+(ω^3 /(1+ω^6 ))+1  =((ω^(12) −1+ω^4 +ω^6 +ω^8 )/(ω+ω^3 +ω^5 +ω^7 +ω^9 +ω^(11) ))+1  =((ω^5 −1+ω^4 +ω^6 +ω)/(ω+ω^3 +ω^5 +1+ω^2 +ω^4 ))+1  =((−1−1−ω^2 −ω^3 )/(−ω^6 ))+1  =((2+ω^2 +ω^3 )/ω^6 )+1  =2ω+ω^3 +ω^4 +1
{ω7=11+ω+ω2++ω6=01ω+ω6+1ω2+ω5+1ω3+ω4=ωω2+ω7+ω2ω4+ω7+ω3ω6+ω7=ω1+ω2+ω21+ω4+ω31+ω6=1+ω4+1+ω21+ω4+ω2+ω61+1+ω31+ω6=1ω61+ω4+ω2+ω6+1+ω31+ω6=1ω6ωω3ω5+ω31+ω6+1=ω61ω+ω3+ω5+ω31+ω6+1=ω121+ω4+ω6+ω8ω+ω3+ω5+ω7+ω9+ω11+1=ω51+ω4+ω6+ωω+ω3+ω5+1+ω2+ω4+1=11ω2ω3ω6+1=2+ω2+ω3ω6+1=2ω+ω3+ω4+1
Answered by Rasheed.Sindhi last updated on 22/Jan/23
if ω^7 =1   { ((ω^7 =1)),((1+ω+ω^2 +...ω^6 =0)) :}  ▶(1/(ω+ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =(1/(ω+ω^6 ))∙((ω−ω^6 )/(ω−ω^6 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =((ω−ω^6 )/(ω^2 −ω^(12) ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =((ω−ω^6 )/(ω^2 −ω^5 ))+(1/(ω^2 +ω^5 ))+(1/(ω^3 +ω^4 ))  =((ω^3 +ω^6 −ω^8 −ω^(11) )/(ω^4 −ω^(10) ))+(1/(ω^3 +ω^4 ))  =((ω^3 +ω^6 −ω−ω^4 )/(ω^4 −ω^3 ))+(1/(ω^3 +ω^4 ))  =((ω^6 +ω^9 −ω^4 −ω^7 +ω^7 +ω^(10) −ω^5 −ω^8 )/(ω^8 −ω^6 ))  =((ω^6 +ω^2 −ω^4 −ω^7 +ω^7 +ω^3 −ω^5 −ω)/(ω−ω^6 ))  =((ω^6 +ω^3 +ω^2 −ω^4 −ω^5 −ω)/(ω−ω^6 ))+1−1  =((ω^3 +ω^2 −(ω^4 +ω^5 ))/(ω−ω^6 ))−1  =((ω^3 +ω^2 −(−1−ω−ω^2 −ω^3 −ω^6 ))/(ω−ω^6 ))−1  =((ω^3 +ω^2 +1+ω+ω^2 +ω^3 +ω^6 )/(ω−ω^6 ))−1  =((2ω^3 +2ω^2 +1+2ω^6 )/(ω−ω^6 ))
ifω7=1{ω7=11+ω+ω2+ω6=01ω+ω6+1ω2+ω5+1ω3+ω4=1ω+ω6ωω6ωω6+1ω2+ω5+1ω3+ω4=ωω6ω2ω12+1ω2+ω5+1ω3+ω4=ωω6ω2ω5+1ω2+ω5+1ω3+ω4=ω3+ω6ω8ω11ω4ω10+1ω3+ω4=ω3+ω6ωω4ω4ω3+1ω3+ω4=ω6+ω9ω4ω7+ω7+ω10ω5ω8ω8ω6=ω6+ω2ω4ω7+ω7+ω3ω5ωωω6=ω6+ω3+ω2ω4ω5ωωω6+11=ω3+ω2(ω4+ω5)ωω61=ω3+ω2(1ωω2ω3ω6)ωω61=ω3+ω2+1+ω+ω2+ω3+ω6ωω61=2ω3+2ω2+1+2ω6ωω6
Commented by liuxinnan last updated on 23/Jan/23
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *