Menu Close

If-9x-2-6xy-4y-2-is-a-factor-of-27x-3-8y-3-find-the-other-factor-




Question Number 22061 by NECx last updated on 10/Oct/17
If 9x^2 +6xy+4y^2  is a factor of  27x^3 −8y^3 . find the other factor.
$$\mathrm{If}\:\mathrm{9x}^{\mathrm{2}} +\mathrm{6xy}+\mathrm{4y}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of} \\ $$$$\mathrm{27x}^{\mathrm{3}} −\mathrm{8y}^{\mathrm{3}} .\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{factor}. \\ $$
Answered by sma3l2996 last updated on 10/Oct/17
27x^3 −8y^3 =(3x)^3 −(2y)^3 =(3x−2y)((3x)^2 +3x×2y+(2y)^2 )  =(3x−2y)(9x^2 +6xy+4y^2 )  so the other factor is 3x−2y
$$\mathrm{27}{x}^{\mathrm{3}} −\mathrm{8}{y}^{\mathrm{3}} =\left(\mathrm{3}{x}\right)^{\mathrm{3}} −\left(\mathrm{2}{y}\right)^{\mathrm{3}} =\left(\mathrm{3}{x}−\mathrm{2}{y}\right)\left(\left(\mathrm{3}{x}\right)^{\mathrm{2}} +\mathrm{3}{x}×\mathrm{2}{y}+\left(\mathrm{2}{y}\right)^{\mathrm{2}} \right) \\ $$$$=\left(\mathrm{3}{x}−\mathrm{2}{y}\right)\left(\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{xy}+\mathrm{4}{y}^{\mathrm{2}} \right) \\ $$$${so}\:{the}\:{other}\:{factor}\:{is}\:\mathrm{3}{x}−\mathrm{2}{y} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *