Menu Close

if-a-0-1-a-1-2-and-a-n-1-a-n-a-n-1-find-a-n-in-terms-of-n-




Question Number 130593 by mr W last updated on 27/Jan/21
if a_0 =1, a_1 =2 and a_(n+1) =(√(a_n a_(n−1) ))  find a_n  in terms of n.
ifa0=1,a1=2andan+1=anan1findanintermsofn.
Commented by malwan last updated on 27/Jan/21
a_n  =2^(((((((2^n +(−1)^(n−1) )/3)))/2^(n−1) )))   n≥3 edited
an=2((2n+(1)n13)2n1)n3edited
Commented by malwan last updated on 27/Jan/21
a_2  = (2×1)^(1/2)  = 2^(1/2)   a_3  = (2^(1/2) ×2)^(1/2)  = 2^(3/4)   a_4  = (2^(3/4) ×2^(1/2) )^(1/2)  = 2^(5/8)   a_5  = (2^(5/8) ×2^(3/4) )^(1/2) = 2^((11)/(16))  =2^(((((32+1)/3)))/2^(4 ) )   = 2^(((((2^5 +1^(5−1) )/3)))/2^(5−1) )   a_6  = (2^((11)/(16)) ×2^(5/8) )^(1/2) = 2^((21)/(32)) =2^(((((64−1)/3)))/2^5 )   =2^(((((2^6 +(−1)^(6−1) )/3)))/2^(6−1) )   a_7  = (2^((21)/(32)) ×2^((11)/(16)) )^(1/2) = 2^((43)/(64)) =2^(((((2^7 +(−1)^(7−1) )/3)))/2^(7−1) )   ∴ a_n  = 2^(((((2^n +(−1)^(n−1) )/3)))/2^(n−1) )
a2=(2×1)12=212a3=(212×2)12=234a4=(234×212)12=258a5=(258×234)12=21116=2(32+13)24=2(25+1513)251a6=(21116×258)12=22132=2(6413)25=2(26+(1)613)261a7=(22132×21116)12=24364=2(27+(1)713)271an=2(2n+(1)n13)2n1
Commented by mr W last updated on 27/Jan/21
thank you! good!
thankyou!good!
Answered by mindispower last updated on 27/Jan/21
⇒ln(a_(n+1) )−(1/2)ln(a_n )−(1/z)ln(a_(n−1) )=0  ln(a_n ).w_n   ⇒w_(n+1) −(w_n /2)−(w_(n−1) /2)=0  X^2 −(X/2)−(1/2).0  X_1 =1,X_2 =−(1/2)  w_n =a+b(−(1/2))^n   w_0 =0⇒a+b=0,2a−b=2ln(2)  a=(2/3)ln(2),b=−(2/3)ln(2)  w_n =ln(2^(2/3) )−(2/3)ln(2)(−(1/2))^n   =ln(2^(2/3) .2^(((−2)/3).(((−1)^n )/2^n )) )  =ln(2^((2^(n+1) −2(−1)^n )/(3.2^n )) )=w_n ,a_n =e^w_n  =2^((2^(n+1) −2(−1)^n )/(3.2^n ))
ln(an+1)12ln(an)1zln(an1)=0ln(an).wnwn+1wn2wn12=0X2X212.0X1=1,X2=12wn=a+b(12)nw0=0a+b=0,2ab=2ln(2)a=23ln(2),b=23ln(2)wn=ln(223)23ln(2)(12)n=ln(223.223.(1)n2n)=ln(22n+12(1)n3.2n)=wn,an=ewn=22n+12(1)n3.2n
Commented by mr W last updated on 27/Jan/21
thank you sir!  that′s what i also got:  a_n =2^((2/3)(1−(((−1)^n )/2^n )))
thankyousir!thatswhatialsogot:an=223(1(1)n2n)
Commented by mindispower last updated on 27/Jan/21
always pleasur sir
alwayspleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *