Question Number 130593 by mr W last updated on 27/Jan/21
$${if}\:{a}_{\mathrm{0}} =\mathrm{1},\:{a}_{\mathrm{1}} =\mathrm{2}\:{and}\:{a}_{{n}+\mathrm{1}} =\sqrt{{a}_{{n}} {a}_{{n}−\mathrm{1}} } \\ $$$${find}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$
Commented by malwan last updated on 27/Jan/21
$${a}_{{n}} \:=\mathrm{2}^{\left(\frac{\left(\frac{\mathrm{2}^{{n}} +\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{3}}\right)}{\mathrm{2}^{{n}−\mathrm{1}} }\right)} \\ $$$${n}\geqslant\mathrm{3}\:{edited} \\ $$
Commented by malwan last updated on 27/Jan/21
$${a}_{\mathrm{2}} \:=\:\left(\mathrm{2}×\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${a}_{\mathrm{3}} \:=\:\left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} ×\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${a}_{\mathrm{4}} \:=\:\left(\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} ×\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{8}}} \\ $$$${a}_{\mathrm{5}} \:=\:\left(\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{8}}} ×\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\:\mathrm{2}^{\frac{\mathrm{11}}{\mathrm{16}}} \:=\mathrm{2}^{\frac{\left(\frac{\mathrm{32}+\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{2}^{\mathrm{4}\:} }} \\ $$$$=\:\mathrm{2}^{\frac{\left(\frac{\mathrm{2}^{\mathrm{5}} +\mathrm{1}^{\mathrm{5}−\mathrm{1}} }{\mathrm{3}}\right)}{\mathrm{2}^{\mathrm{5}−\mathrm{1}} }} \\ $$$${a}_{\mathrm{6}} \:=\:\left(\mathrm{2}^{\frac{\mathrm{11}}{\mathrm{16}}} ×\mathrm{2}^{\frac{\mathrm{5}}{\mathrm{8}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\:\mathrm{2}^{\frac{\mathrm{21}}{\mathrm{32}}} =\mathrm{2}^{\frac{\left(\frac{\mathrm{64}−\mathrm{1}}{\mathrm{3}}\right)}{\mathrm{2}^{\mathrm{5}} }} \\ $$$$=\mathrm{2}^{\frac{\left(\frac{\mathrm{2}^{\mathrm{6}} +\left(−\mathrm{1}\right)^{\mathrm{6}−\mathrm{1}} }{\mathrm{3}}\right)}{\mathrm{2}^{\mathrm{6}−\mathrm{1}} }} \\ $$$${a}_{\mathrm{7}} \:=\:\left(\mathrm{2}^{\frac{\mathrm{21}}{\mathrm{32}}} ×\mathrm{2}^{\frac{\mathrm{11}}{\mathrm{16}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\:\mathrm{2}^{\frac{\mathrm{43}}{\mathrm{64}}} =\mathrm{2}^{\frac{\left(\frac{\mathrm{2}^{\mathrm{7}} +\left(−\mathrm{1}\right)^{\mathrm{7}−\mathrm{1}} }{\mathrm{3}}\right)}{\mathrm{2}^{\mathrm{7}−\mathrm{1}} }} \\ $$$$\therefore\:{a}_{{n}} \:=\:\mathrm{2}^{\frac{\left(\frac{\mathrm{2}^{{n}} +\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{3}}\right)}{\mathrm{2}^{{n}−\mathrm{1}} }} \\ $$
Commented by mr W last updated on 27/Jan/21
$${thank}\:{you}!\:{good}! \\ $$
Answered by mindispower last updated on 27/Jan/21
$$\Rightarrow{ln}\left({a}_{{n}+\mathrm{1}} \right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({a}_{{n}} \right)−\frac{\mathrm{1}}{{z}}{ln}\left({a}_{{n}−\mathrm{1}} \right)=\mathrm{0} \\ $$$${ln}\left({a}_{{n}} \right).{w}_{{n}} \\ $$$$\Rightarrow{w}_{{n}+\mathrm{1}} −\frac{{w}_{{n}} }{\mathrm{2}}−\frac{{w}_{{n}−\mathrm{1}} }{\mathrm{2}}=\mathrm{0} \\ $$$${X}^{\mathrm{2}} −\frac{{X}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{0} \\ $$$${X}_{\mathrm{1}} =\mathrm{1},{X}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${w}_{{n}} ={a}+{b}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$${w}_{\mathrm{0}} =\mathrm{0}\Rightarrow{a}+{b}=\mathrm{0},\mathrm{2}{a}−{b}=\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$$${a}=\frac{\mathrm{2}}{\mathrm{3}}{ln}\left(\mathrm{2}\right),{b}=−\frac{\mathrm{2}}{\mathrm{3}}{ln}\left(\mathrm{2}\right) \\ $$$${w}_{{n}} ={ln}\left(\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)−\frac{\mathrm{2}}{\mathrm{3}}{ln}\left(\mathrm{2}\right)\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$={ln}\left(\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}} .\mathrm{2}^{\frac{−\mathrm{2}}{\mathrm{3}}.\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }} \right) \\ $$$$={ln}\left(\mathrm{2}^{\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}.\mathrm{2}^{{n}} }} \right)={w}_{{n}} ,{a}_{{n}} ={e}^{{w}_{{n}} } =\mathrm{2}^{\frac{\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}.\mathrm{2}^{{n}} }} \\ $$$$ \\ $$
Commented by mr W last updated on 27/Jan/21
$${thank}\:{you}\:{sir}! \\ $$$${that}'{s}\:{what}\:{i}\:{also}\:{got}: \\ $$$${a}_{{n}} =\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} }\right)} \\ $$
Commented by mindispower last updated on 27/Jan/21
$${always}\:{pleasur}\:{sir}\: \\ $$