Menu Close

If-a-1-1-and-n-1-a-n-1-1-1-n-a-n-find-a-n-




Question Number 147357 by Jamshidbek last updated on 20/Jul/21
  If  a_1 =1  and n≥1 a_(n+1) =(1/(1+n∙a_n ))  find  a_n =?
$$\:\:\mathrm{If}\:\:\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{1}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{n}\centerdot\mathrm{a}_{\mathrm{n}} } \\ $$$$\mathrm{find}\:\:\mathrm{a}_{\mathrm{n}} =? \\ $$
Answered by ArielVyny last updated on 20/Jul/21
a_1 =1=(1/(1+0))  a_2 =(1/(1+a_1 ))  =(1/(1+1))   (n=1)  a_3 =(1/(1+2a_2 ))=(1/(1+2(1/(1+1)))) (n=2)  a_4 =(1/(1+3a_3 ))=(1/(1+3((1/(1+2(1/(1+1))))))) (n=3)  a_5 =(1/(1+4a_4 ))=(1/(1+4((1/(1+3((1/(1+2(1/(1+1))))))))))  (n=4)  a_n =(1/(1+na_(n−1) ))=(1/(1+n((1/(1+(n−1)((1/(1+(n−2)(1/(1+1)))))...((1/(1+(n−k)(1/(1+1)))))))))  a_n =(1/(1+n((1/(1+Π_(k=1) ^n ((1/(1+(n−k)(1/(1+1))))))))))
$${a}_{\mathrm{1}} =\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}} \\ $$$${a}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{a}_{\mathrm{1}} }\:\:=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}\:\:\:\left({n}=\mathrm{1}\right) \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}{a}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\:\left({n}=\mathrm{2}\right) \\ $$$${a}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}{a}_{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\right)}\:\left({n}=\mathrm{3}\right) \\ $$$${a}_{\mathrm{5}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{4}{a}_{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\right)}\right)}\:\:\left({n}=\mathrm{4}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}+{na}_{{n}−\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{1}+{n}\left(\frac{\mathrm{1}}{\mathrm{1}+\left({n}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{1}+\left({n}−\mathrm{2}\right)\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\right)…\left(\frac{\mathrm{1}}{\mathrm{1}+\left({n}−{k}\right)\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\right)}\right.} \\ $$$${a}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}+{n}\left(\frac{\mathrm{1}}{\mathrm{1}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{1}+\left({n}−{k}\right)\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}}\right)}\right)} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *