Menu Close

if-a-1-3-a-2-2-a-n-2-a-n-1-a-1-2-find-a-6-mister-W-method-a-n-A-1-3-2-n-B-1-3-2-n-a-1-A-1-3-2-B-1-3-2-3-a-2-A-1-3-2-2-B-1-3-




Question Number 81458 by jagoll last updated on 13/Feb/20
if a_1  = 3 ,a_2 =2  a_(n+2)  = a_(n+1) +(a_1 /2)  find a_6  =?  mister W method  a_n  =A(((1+(√3))/2))^n +B(((1−(√3))/2))^n   a_1 = A(((1+(√3))/2))+B(((1−(√3))/2))=3  a_2  = A(((1+(√3))/2))^2 +B(((1−(√3))/2))^2 =2  ⇒A+B+(A−B)(√3) =6  ⇒2(A+B)+(A−B)(√3) =4  A= ((4−(√3))/( (√3))) , B = ((−4−(√3))/3)  a_n  = (((4−(√3))/( (√3))))(((1+(√3))/2))^n −(((4+(√3))/( (√3))))(((1−(√3))/2))^n
$$\mathrm{if}\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{3}\:,\mathrm{a}_{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{2}} \:=\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} +\frac{\mathrm{a}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{a}_{\mathrm{6}} \:=? \\ $$$$\mathrm{mister}\:\mathrm{W}\:\mathrm{method} \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} +\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\:\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{3} \\ $$$$\mathrm{a}_{\mathrm{2}} \:=\:\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{B}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow\mathrm{A}+\mathrm{B}+\left(\mathrm{A}−\mathrm{B}\right)\sqrt{\mathrm{3}}\:=\mathrm{6} \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{A}+\mathrm{B}\right)+\left(\mathrm{A}−\mathrm{B}\right)\sqrt{\mathrm{3}}\:=\mathrm{4} \\ $$$$\mathrm{A}=\:\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}\:,\:\mathrm{B}\:=\:\frac{−\mathrm{4}−\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\:\left(\frac{\mathrm{4}−\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} −\left(\frac{\mathrm{4}+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}} \\ $$
Commented by jagoll last updated on 13/Feb/20
mister W, my work is correct?
$$\mathrm{mister}\:\mathrm{W},\:\mathrm{my}\:\mathrm{work}\:\mathrm{is}\:\mathrm{correct}? \\ $$
Commented by john santu last updated on 13/Feb/20
yes
$$\mathrm{yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *