Menu Close

if-a-1-a-2-a-14-are-roots-of-the-polynomial-p-x-x-14-x-8-2x-1-calculate-i-1-14-1-a-i-1-2-




Question Number 28544 by abdo imad last updated on 26/Jan/18
if  a_1  ,a_2 ,...a_(14 ) are roots of the polynomial  p(x)=x^(14) +x^8  2x+1   calculate  Σ_(i=1) ^(14)   (1/((a_i −1)^2 ))  .
ifa1,a2,a14arerootsofthepolynomialp(x)=x14+x82x+1calculatei=1141(ai1)2.
Commented by abdo imad last updated on 26/Jan/18
p(x)=x^(14)  +x^8  +2x+1 .
p(x)=x14+x8+2x+1.
Commented by abdo imad last updated on 28/Jan/18
we know that  ((p^′ (x))/(p(x))) = Σ_(i=1) ^(14 )  (1/(x−x_i ))   ((p^(′′)  p(x) −p′^2 (x))/(p^2 (x)))= −Σ_(i=1) ^(14)    (1/((x−x_i )^2 ))   but we have  p^′ (x)= 14 x^(13) +8x^7  +2  and  p^((2)) (x)= 14 ×13 x^(12)  +56 x^6   Σ_(i=2) ^(14)    (1/((x−a_i )2 ))=−(((14×13x^(12)  +56 x^6 )(x^(14) +x^8 +2x+1)−(14x^(13)  +8x^7 +2)^2 )/((x^(14)  +x^8  +2x+1)^2 ))  and for x=1 ?we find  Σ_(i=1) ^(14)    (1/((a_i  −1)^2 ))=−(((14×13  +56)×5−(24))/(25))...
weknowthatp(x)p(x)=i=1141xxipp(x)p2(x)p2(x)=i=1141(xxi)2butwehavep(x)=14x13+8x7+2andp(2)(x)=14×13x12+56x6i=2141(xai)2=(14×13x12+56x6)(x14+x8+2x+1)(14x13+8x7+2)2(x14+x8+2x+1)2andforx=1?wefindi=1141(ai1)2=(14×13+56)×5(24)25

Leave a Reply

Your email address will not be published. Required fields are marked *