Menu Close

IF-a-1-a-2-a-n-1-a-n-are-in-AP-then-prove-that-1-a-1-a-n-1-a-2-a-n-1-1-a-3-a-n-2-1-a-n-a-1-2-a-1-a-n-1-a-1-1-a-2-1-a-n-




Question Number 27908 by v7277668420 last updated on 16/Jan/18
IF  a_(1,) a_2 ,.....,a_(n−1) ,a_n  are in AP then prove that  1/a_1 .a_n + 1/a_2 .a_(n−1) + 1/a_3 .a_(n−2) +...+1/a_n .a_1 =  2/a_1 +a_(n ) [1/a_(1 ) +1/a_2 +....+1/a_n ]
IFa1,a2,..,an1,anareinAPthenprovethat1/a1.an+1/a2.an1+1/a3.an2++1/an.a1=2/a1+an[1/a1+1/a2+.+1/an]
Commented by v7277668420 last updated on 17/Jan/18
  please help
pleasehelp
Answered by ajfour last updated on 17/Jan/18
l.h.s.=Σ_(r=1) ^n  (1/(a_r a_(n−r+1) ))  =Σ_(r=1) ^n (1/([a_1 +(r−1)d][a_1 +(n−r)d]))  =(1/(2a_1 +(n−1)d))  Σ_(r=1) ^n (([a_1 +(r−1)d]+[a_1 +(n−r)d])/([a_1 +(r−1)d][a_1 +(n−r)d]))  =(1/(2a_1 +(n−1)d))  Σ_(r=1) ^n [(1/(a_1 +(n−r)d))+(1/(a_1 +(r−1)d))]  =(2/(a_n +a_1 ))[(1/a_n )+(1/a_(n−1) )+(1/a_(n−2) )+...(1/a_1 )] .
l.h.s.=nr=11aranr+1=nr=11[a1+(r1)d][a1+(nr)d]=12a1+(n1)dnr=1[a1+(r1)d]+[a1+(nr)d][a1+(r1)d][a1+(nr)d]=12a1+(n1)dnr=1[1a1+(nr)d+1a1+(r1)d]=2an+a1[1an+1an1+1an2+1a1].
Commented by v7277668420 last updated on 17/Jan/18
any easy method
anyeasymethod

Leave a Reply

Your email address will not be published. Required fields are marked *