Question Number 184431 by SulaymonNorboyev last updated on 06/Jan/23
$${If}\:\:\:\begin{cases}{\mathrm{a}+\frac{\mathrm{1}}{\mathrm{b}}=\frac{\mathrm{7}}{\mathrm{3}}}\\{\mathrm{b}+\frac{\mathrm{1}}{\mathrm{c}}=\mathrm{4}}\\{\mathrm{c}+\frac{\mathrm{1}}{\mathrm{a}}=\mathrm{1}}\end{cases}\:\:\:\mathrm{find}\:\:\mathrm{2022}\centerdot\mathrm{abc} \\ $$
Answered by mr W last updated on 06/Jan/23
$${c}=\mathrm{1}−\frac{\mathrm{1}}{{a}}=\frac{{a}−\mathrm{1}}{{a}} \\ $$$${b}=\mathrm{4}−\frac{{a}}{{a}−\mathrm{1}}=\frac{\mathrm{3}{a}−\mathrm{4}}{{a}−\mathrm{1}} \\ $$$$\Rightarrow{abc}={a}×\frac{\mathrm{3}{a}−\mathrm{4}}{{a}−\mathrm{1}}×\frac{{a}−\mathrm{1}}{{a}}=\mathrm{3}{a}−\mathrm{4} \\ $$$$ \\ $$$${a}+\frac{{a}−\mathrm{1}}{\mathrm{3}{a}−\mathrm{4}}=\frac{\mathrm{7}}{\mathrm{3}} \\ $$$$\mathrm{9}{a}^{\mathrm{2}} −\mathrm{30}{a}+\mathrm{25}=\mathrm{0} \\ $$$$\left(\mathrm{3}{a}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$${abc}=\mathrm{3}{a}−\mathrm{4}=\mathrm{5}−\mathrm{4}=\mathrm{1} \\ $$$$\mathrm{2023}{abc}=\mathrm{2023}\:\checkmark \\ $$
Answered by ajfour last updated on 06/Jan/23
$$\left({a}+\frac{\mathrm{1}}{{b}}\right)\left({b}+\frac{\mathrm{1}}{{c}}\right)\left({c}+\frac{\mathrm{1}}{{a}}\right)={pqr} \\ $$$${abc}+{b}+{a}+\frac{\mathrm{1}}{{c}}+{c}+\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{abc}} \\ $$$$\:\:\:={pqr} \\ $$$${abc}+\frac{\mathrm{1}}{{abc}}+\left({p}+{q}+{r}\right)={pqr} \\ $$$$\left({abc}\right)\left(\frac{\mathrm{1}}{{abc}}\right)=\mathrm{1} \\ $$$$\Rightarrow\:{abc},\:\frac{\mathrm{1}}{{abc}}=\frac{{pqr}−\left({p}+{q}+{r}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\pm\sqrt{\left\{\frac{{pqr}−\left({p}+{q}+{r}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\:\:\:\:=\frac{\mathrm{14}}{\mathrm{3}}−\frac{\mathrm{11}}{\mathrm{3}}\pm\sqrt{\mathrm{1}−\mathrm{1}}\:\:=\mathrm{1} \\ $$
Commented by mr W last updated on 06/Jan/23
$${very}\:{smart}\:{approach}! \\ $$
Commented by manxsol last updated on 07/Jan/23
$$ \\ $$$$\left({abc}\right)\left(\frac{\mathrm{1}}{{abc}}\right)=\mathrm{1}\:\:\:{to}\:{the}\:{toolbox} \\ $$$$ \\ $$
Commented by manxsol last updated on 07/Jan/23
$${a}\:{surreal}\:{answer} \\ $$