Menu Close

If-a-1-b-7-3-b-1-c-4-c-1-a-1-find-2022-abc-




Question Number 184431 by SulaymonNorboyev last updated on 06/Jan/23
If    { ((a+(1/b)=(7/3))),((b+(1/c)=4)),((c+(1/a)=1)) :}   find  2022∙abc
If{a+1b=73b+1c=4c+1a=1find2022abc
Answered by mr W last updated on 06/Jan/23
c=1−(1/a)=((a−1)/a)  b=4−(a/(a−1))=((3a−4)/(a−1))  ⇒abc=a×((3a−4)/(a−1))×((a−1)/a)=3a−4    a+((a−1)/(3a−4))=(7/3)  9a^2 −30a+25=0  (3a−5)^2 =0  ⇒a=(5/3)  abc=3a−4=5−4=1  2023abc=2023 ✓
c=11a=a1ab=4aa1=3a4a1abc=a×3a4a1×a1a=3a4a+a13a4=739a230a+25=0(3a5)2=0a=53abc=3a4=54=12023abc=2023
Answered by ajfour last updated on 06/Jan/23
(a+(1/b))(b+(1/c))(c+(1/a))=pqr  abc+b+a+(1/c)+c+(1/a)+(1/b)+(1/(abc))     =pqr  abc+(1/(abc))+(p+q+r)=pqr  (abc)((1/(abc)))=1  ⇒ abc, (1/(abc))=((pqr−(p+q+r))/2)                ±(√({((pqr−(p+q+r))/2)}^2 −1))      =((14)/3)−((11)/3)±(√(1−1))  =1
(a+1b)(b+1c)(c+1a)=pqrabc+b+a+1c+c+1a+1b+1abc=pqrabc+1abc+(p+q+r)=pqr(abc)(1abc)=1abc,1abc=pqr(p+q+r)2±{pqr(p+q+r)2}21=143113±11=1
Commented by mr W last updated on 06/Jan/23
very smart approach!
verysmartapproach!
Commented by manxsol last updated on 07/Jan/23
  (abc)((1/(abc)))=1   to the toolbox
(abc)(1abc)=1tothetoolbox
Commented by manxsol last updated on 07/Jan/23
a surreal answer
asurrealanswer

Leave a Reply

Your email address will not be published. Required fields are marked *