Menu Close

If-a-1-b-b-1-c-c-1-a-then-prove-that-abc-1-a-b-c-




Question Number 181438 by Agnibhoo98 last updated on 26/Nov/22
If a + (1/b) = b + (1/c) = c + (1/a) then prove that  abc = ±1.   a ≠ b ≠ c
Ifa+1b=b+1c=c+1athenprovethatabc=±1.abc
Commented by mr W last updated on 26/Nov/22
it′s not true. e.g. you can take   a=b=c=2, and get abc=8.
itsnottrue.e.g.youcantakea=b=c=2,andgetabc=8.
Answered by manxsol last updated on 26/Nov/22
have f(a,b,c)  restriccions  a+(1/b)=k  ⇒g()=a+(1/b)−k=0  b+(1/c)=k  ⇒h()=b+(1/c)−k=0  c+(1/a)=k⇒ j()=c+(1/a)−k=0  ▽g()=((∂g/∂x);(∂g/∂y);(∂g/∂z))=(g_x ;g_y ;g_z )  df=λ_1 ▽g+λ_2 ▽h+λ_3 ▽j=0  df(a,b,c,λ_1 ,λ_2 ,λ_3 )=  λ_1 (1,−(1/b^2 ),0)+λ_2 (0,1,−(1/c^2 ))+λ_3 (−(1/a^2 ),0,1)=(0,0,0)   ((λ_1 ,λ_2 ,λ_3 ,(const)),((      1),(    0),(−(1/a^2 )),0),((−(1/b^2 )),(     1),(     0),0),((     0),(−(1/c^2 )),(     1),0) )    (λ_2 /c^2 )=λ_3   ⇒λ_2 =c^2 λ_3   (λ_1 /b^2 )=λ_2   ⇒λ_1 =b^2 λ_2   λ_1 =(λ_3 /a^2 )⇒λ_3 =a^2 λ_1   multiplication exprexions  λ_1 λ_2 λ_3 =a^2 b^2 c^2 λ_1 λ_2 λ_3   1=a^2 b^2 c^2   abc=± 1  LQQD
havef(a,b,c)restriccionsa+1b=kg()=a+1bk=0b+1c=kh()=b+1ck=0c+1a=kj()=c+1ak=0g()=(gx;gy;gz)=(gx;gy;gz)df=λ1g+λ2h+λ3j=0df(a,b,c,λ1,λ2,λ3)=λ1(1,1b2,0)+λ2(0,1,1c2)+λ3(1a2,0,1)=(0,0,0)(λ1λ2λ3const101a201b210001c210)λ2c2=λ3λ2=c2λ3λ1b2=λ2λ1=b2λ2λ1=λ3a2λ3=a2λ1multiplicationexprexionsλ1λ2λ3=a2b2c2λ1λ2λ31=a2b2c2abc=±1LQQD
Commented by mr W last updated on 26/Nov/22
what is proved?  with 2 conditions for 3 variables  abc can get any value.
whatisproved?with2conditionsfor3variablesabccangetanyvalue.
Commented by manxsol last updated on 26/Nov/22
excuse me,Sr. W.how should I do it
excuseme,Sr.W.howshouldIdoit
Commented by manxsol last updated on 26/Nov/22
or the condition is missing a≠b≠c
ortheconditionismissingabc
Commented by Agnibhoo98 last updated on 26/Nov/22
yes
yes
Commented by manxsol last updated on 26/Nov/22
Sr. W, my procedure is correct???
Sr.W,myprocedureiscorrect???
Commented by mr W last updated on 26/Nov/22
something is wrong in the question.  an additional condition is needed.  a≠b≠c could be a such condition.
somethingiswronginthequestion.anadditionalconditionisneeded.abccouldbeasuchcondition.
Commented by mr W last updated on 26/Nov/22
i can′t judge, because i don′t know  what you want to prove.
icantjudge,becauseidontknowwhatyouwanttoprove.
Commented by manxsol last updated on 26/Nov/22
i understand, I will reflect on[the question. thank you very much for you attention
iunderstand,Iwillreflecton[thequestion.thankyouverymuchforyouattention
Answered by Agnibhoo98 last updated on 27/Nov/22
a + (1/b) = b + (1/c)  or a − b = (1/c) − (1/b) = ((b − c)/(bc))  .... (1)  b + (1/c) = c + (1/a)  or b − c = (1/a) − (1/c) = ((c − a)/(ca)) .... (2)  a + (1/b) = c + (1/a)  or a − c = (1/a) − (1/b) = ((b − a)/(ab)) .... (3)  Multiplying (1), (2), (3)    (a − b)(b − c)(a − c) = (((b − c)(c − a)(b − a))/((abc)^2 ))  or (abc)^2  = (((a − b)(b − c)(a − c))/((a − b)(b − c)(a − c)))  or (abc)^2  = 1  or abc = ±1
a+1b=b+1corab=1c1b=bcbc.(1)b+1c=c+1aorbc=1a1c=caca.(2)a+1b=c+1aorac=1a1b=baab.(3)Multiplying(1),(2),(3)(ab)(bc)(ac)=(bc)(ca)(ba)(abc)2or(abc)2=(ab)(bc)(ac)(ab)(bc)(ac)or(abc)2=1orabc=±1

Leave a Reply

Your email address will not be published. Required fields are marked *