Question Number 123607 by mohammad17 last updated on 26/Nov/20
$${if}\:{a}=\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\:\:{find}\:{a}^{\mathrm{1943}} \:\:\:\:? \\ $$
Answered by Dwaipayan Shikari last updated on 26/Nov/20
$${a}\:=\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}\:=\sqrt{{i}} \\ $$$${a}^{\mathrm{1943}} =\left({i}\right)^{\frac{\mathrm{1943}}{\mathrm{2}}} ={i}^{\mathrm{970}} .{i}.\sqrt{{i}}\:=−{i}\sqrt{{i}} \\ $$$${Another}\:{way} \\ $$$${a}=\frac{\mathrm{1}+{i}}{\:\sqrt{\mathrm{2}}}={e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:\:\:\Rightarrow{a}^{\mathrm{1943}} ={e}^{\frac{\mathrm{1943}\pi{i}}{\mathrm{4}}} ={e}^{\mathrm{435}\pi{i}} {e}^{\frac{\mathrm{3}\pi}{\mathrm{4}}{i}} \:=−\mathrm{1}.\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{{i}}{\:\sqrt{\mathrm{2}}} \\ $$
Answered by malwan last updated on 26/Nov/20
$${a}=\left[\mathrm{1}\:,\:\frac{\pi}{\mathrm{4}}\right] \\ $$$$\Rightarrow{a}^{\mathrm{1943}} \:=\:\left[\mathrm{1}^{\mathrm{1943}} \:,\:\mathrm{1943}×\frac{\pi}{\mathrm{4}}\right]=\:\left[\mathrm{1}\:,\:\pi\right]\:\left[\mathrm{1}\:,\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right] \\ $$$$=\:−\mathrm{1}\left({cos}\frac{\mathrm{3}\pi}{\mathrm{4}}\:+\:{i}\:{sin}\:\frac{\mathrm{3}\pi}{\mathrm{4}}\right)\:=\:\frac{\mathrm{1}−{i}}{\:\sqrt{\mathrm{2}}} \\ $$
Answered by TANMAY PANACEA last updated on 26/Nov/20
$${a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{i}\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}={cos}\frac{\pi}{\mathrm{4}}+{isin}\frac{\pi}{\mathrm{4}}={e}^{{i}×\frac{\pi}{\mathrm{4}}} \\ $$$$\mathrm{1943}=\mathrm{4}×\mathrm{485}+\mathrm{3} \\ $$$${a}={e}^{{i}×\frac{\pi}{\mathrm{4}}} \\ $$$${a}^{\mathrm{1943}} =\left({e}^{{i}×\frac{\pi}{\mathrm{4}}} \right)^{\mathrm{4}×\mathrm{485}+\mathrm{3}} ={e}^{{i}×\mathrm{485}\pi+{i}×\frac{\mathrm{3}\pi}{\mathrm{4}}} \\ $$$$ \\ $$$${e}^{{i}×\mathrm{485}\pi} ×{e}^{{i}×\frac{\mathrm{3}\pi}{\mathrm{4}}} \\ $$$$=\left({cos}\mathrm{485}\pi+{isin}\mathrm{485}\pi\right)\left({cos}\mathrm{135}^{{o}} +{isin}\mathrm{135}^{{o}} \right) \\ $$$$=\left\{{cos}\left(\mathrm{242}×\mathrm{2}\pi+\pi\right)+{i}×\mathrm{0}\right\}\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{i}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$=\left({cos}\pi+\mathrm{0}\right)\left(\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{i}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$$=\left(−\mathrm{1}\right)\left(\frac{−\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{i}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{{i}}{\:\sqrt{\mathrm{2}}} \\ $$