Menu Close

if-a-10-a-5-1-0-then-a-2005-1-a-2005-a-a-10-a-11-b-a-10-a-5-c-3-a-10-a-5-d-0-with-steps-




Question Number 94521 by Abdulrahman last updated on 19/May/20
if a^(10) +a^5 +1=0  then a^(2005) +(1/a^(2005) )=?  a: a^(10) +a^(11)     b:a^(10) +a^5    c:3(a^(10) +a^5 )  d:0  with steps?
ifa10+a5+1=0thena2005+1a2005=?a:a10+a11b:a10+a5c:3(a10+a5)d:0withsteps?
Commented by peter frank last updated on 19/May/20
check 92839
check92839
Commented by Abdulrahman last updated on 19/May/20
thanks alot
thanksalot
Commented by i jagooll last updated on 19/May/20
answer B
answerB
Answered by Abdulrahman last updated on 19/May/20
please solve
pleasesolve
Answered by i jagooll last updated on 19/May/20
Commented by i jagooll last updated on 19/May/20
this is mr john's answer
Answered by mathmax by abdo last updated on 20/May/20
1+a^5  +a^(10)  =0 ⇒1+a^5  +(a^5 )^2  =0 ⇒((1−(a^5 )^3 )/(1−a^5 )) =0 ⇒a^(15)  =1 and a^5  ≠0  the roots of a^(15)  =0 are z_k =e^(i((2kπ)/(15)))     k∈[[0,14]]  a^(2005)  +a^(−2005)  =(e^(i((2kπ(2005))/(15)))  + e^(−i((2kπ(2005))/(15))) )  =2cos(((2kπ(2005))/(15))) =2 cos(((4010kπ)/(15))) =2cos(267π+ (π/3))  =2cos(π+(π/3)) =−2cos((π/3)) =−2×(1/2) =−1
1+a5+a10=01+a5+(a5)2=01(a5)31a5=0a15=1anda50therootsofa15=0arezk=ei2kπ15k[[0,14]]a2005+a2005=(ei2kπ(2005)15+ei2kπ(2005)15)=2cos(2kπ(2005)15)=2cos(4010kπ15)=2cos(267π+π3)=2cos(π+π3)=2cos(π3)=2×12=1

Leave a Reply

Your email address will not be published. Required fields are marked *