Menu Close

If-A-2-1-1-2-then-A-2006-




Question Number 54938 by gunawan last updated on 14/Feb/19
If A= [(2,1),(1,2) ],then A^(2006) =...
IfA=[2112],thenA2006=
Commented by Abdo msup. last updated on 15/Feb/19
we have A = (((2    0)),((0    2)) )  + (((0     1)),((1      0)) )  =2I +J  J^2 = (((0      1)),((1      0)) ) . (((0      1)),((1      0)) ) = (((1     0)),((0       1)) ) =I ⇒  J^(2n) =I  and J^(2n+1) =J   and A^n =(2I +J)^n   =Σ_(k=0) ^n  C_n ^k  J^k  (2I)^(n−k)   =Σ_(p=0) ^([(n/2)])   C_n ^(2p)   j^(2p) (2I)^(n−2p)    +Σ_(p=0) ^([((n−1)/2)])  C_n ^(2p+1)  j^(2p+1) (2I)^(n−2p−1)   =Σ_(p=0) ^([(n/2)])  C_n ^(2p) 2^(n−2p)  I   +Σ_(p=0) ^([((n−1)/2)])  C_n ^(2p+1)  2^(n−2p−1)  J ⇒  A^(2006)  =Σ_(p=0) ^(1003) C_(2006) ^(2p)   2^(2006−2p)  +Σ_(p=0) ^(2002)  C_(2006) ^(2p+1)  2^(2005−2p)
wehaveA=(2002)+(0110)=2I+JJ2=(0110).(0110)=(1001)=IJ2n=IandJ2n+1=JandAn=(2I+J)n=k=0nCnkJk(2I)nk=p=0[n2]Cn2pj2p(2I)n2p+p=0[n12]Cn2p+1j2p+1(2I)n2p1=p=0[n2]Cn2p2n2pI+p=0[n12]Cn2p+12n2p1JA2006=p=01003C20062p220062p+p=02002C20062p+1220052p

Leave a Reply

Your email address will not be published. Required fields are marked *