Menu Close

if-a-2-2ab-3b-2-1-prove-that-a-3b-3-d-2-b-da-2-2-a-2-2ab-3b-2-0-




Question Number 115380 by mathdave last updated on 25/Sep/20
if   a^2 +2ab+3b^2 =1,prove that   (a+3b)^3 (d^2 b/da^2 )+2(a^2 +2ab+3b^2 )=0
ifa2+2ab+3b2=1,provethat(a+3b)3d2bda2+2(a2+2ab+3b2)=0
Answered by Dwaipayan Shikari last updated on 25/Sep/20
a^2 +2ab+3b^2 =1  2a+2b+2a(db/da)+6b(db/da)=0  (db/da)=−((a+b)/(a+3b))→(a)  2+2(db/da)+2a(d^2 b/da^2 )+2(db/da)+6b(d^2 b/da^2 )+6((db/da))^2 =0  2+4(db/da)+2(a+3b)(d^2 b/da^2 )+6((db/da))=0  1−((2a+2b)/(a+3b))+(a+3b).(d^2 b/da^2 )+3(((a+b)/(a+3b)))^2 =0  (d^2 b/da^2 )(a+3b)=−3(((a+b)/(a+3b)))^2 +((2(a+b))/(a+3b))−1  (d^2 b/da^2 )(a+3b)^3 =−3a^2 −6ab−3b^2 +2(a+3b)(a+b)−a^2 −6ab−9b^2   (d^2 b/da^2 )(a+3b)^3 =−4a^2 −12ab−12b^2 +2a^2 +6ab+2ab+6b^2   (d^2 b/da^2 )(a+3b)^3 =−2(a^2 +2ab+3b^2 )  (d^2 b/da^2 )(a+3b)^3 +2(a^2 +2ab+3b^2 )=0
a2+2ab+3b2=12a+2b+2adbda+6bdbda=0dbda=a+ba+3b(a)2+2dbda+2ad2bda2+2dbda+6bd2bda2+6(dbda)2=02+4dbda+2(a+3b)d2bda2+6(dbda)=012a+2ba+3b+(a+3b).d2bda2+3(a+ba+3b)2=0d2bda2(a+3b)=3(a+ba+3b)2+2(a+b)a+3b1d2bda2(a+3b)3=3a26ab3b2+2(a+3b)(a+b)a26ab9b2d2bda2(a+3b)3=4a212ab12b2+2a2+6ab+2ab+6b2d2bda2(a+3b)3=2(a2+2ab+3b2)d2bda2(a+3b)3+2(a2+2ab+3b2)=0
Answered by 1549442205PVT last updated on 25/Sep/20
a^2 +2ab+3b^2 =1⇔3b^2 +2ab+a^2 −1=0  this is quadratic eqn.w.r.t b with  Δ′=a^2 −3a^2 +3=3−2a^2   ⇒b=((−a±(√(3−2a^2 )))/3)(1)  ⇒(db/da)=(−1∓((2a)/( (√(3−2a^2 )))))/3  ⇒(d^2 b/da^2 )=∓(((2(√(3−2a^2 ))+((4a^2 )/( (√(3−2a^2 )))))/(3(3−2a^2 ))))  =∓((2/((3−2a^2 )(√(3−2a^2 )))))(2)  From(1)we have 3b+a=±(√(3−2a^2 ))  ⇒(3b+a)^3 =±(3−2a^2 )(√(3−2a^2 ))(3)  From(2)(3)we get  (3b+a)^3 (d^2 b/da^2 )=−2  ⇒(3b+a)^3 (d^2 b/da^2 )+2(a^2 +2ab+3b^2 )=0  (Q.E.D)
a2+2ab+3b2=13b2+2ab+a21=0thisisquadraticeqn.w.r.tbwithΔ=a23a2+3=32a2b=a±32a23(1)dbda=(12a32a2)/3d2bda2=(232a2+4a232a23(32a2))=(2(32a2)32a2)(2)From(1)wehave3b+a=±32a2(3b+a)3=±(32a2)32a2(3)From(2)(3)weget(3b+a)3d2bda2=2(3b+a)3d2bda2+2(a2+2ab+3b2)=0(Q.E.D)

Leave a Reply

Your email address will not be published. Required fields are marked *