Menu Close

If-a-2-a-1-0-then-find-a-5-a-4-1-




Question Number 191553 by MATHEMATICSAM last updated on 25/Apr/23
If a^2  + a + 1 = 0 then find a^5  + a^4  + 1.
Ifa2+a+1=0thenfinda5+a4+1.
Commented by Tinku Tara last updated on 25/Apr/23
a=ω, ω^2 , where ω is cube root of unity.
a=ω,ω2,whereωiscuberootofunity.
Answered by manxsol last updated on 27/Apr/23
(a−1)(a^2 +a+1)=a^3 −1=0  a^3 =1⇒a^2 (a_(=1) ^3 )+a(a_(=1) ^3 )+1=0
(a1)(a2+a+1)=a31=0a3=1a2(a=13)+a(a=13)+1=0
Answered by mr W last updated on 25/Apr/23
a^2 +a+1=0  a^2 =−(a+1)  a^4 =a^2 +2a+1=−a−1+2a+1=a  a^5 =a^4 ×a=a^2 =−a−1  a^5 +a^4 +1=−a−1+a+1=0 ✓
a2+a+1=0a2=(a+1)a4=a2+2a+1=a1+2a+1=aa5=a4×a=a2=a1a5+a4+1=a1+a+1=0
Answered by Rasheed.Sindhi last updated on 26/Apr/23
Another way...   a^2  + a + 1 = 0⇒1=−a^2 −a  ▶a^5  + a^4  + 1=a^5  + a^4 −a^2 −a     =a^3 (a^2 +a−(1/a) −(1/a^2 ))     =a^3 {(a−(1/a))(a+(1/a))+(a−(1/a))}     =a^3 (a−(1/a))(a+(1/a)+1)      =a^3 (a−(1/a))(((a^2 +a+1)/a))      =a^2 (a−(1/a))(0)=0
Anotherwaya2+a+1=01=a2aa5+a4+1=a5+a4a2a=a3(a2+a1a1a2)=a3{(a1a)(a+1a)+(a1a)}=a3(a1a)(a+1a+1)=a3(a1a)(a2+a+1a)=a2(a1a)(0)=0
Answered by Tinku Tara last updated on 05/Jul/23
a=w or w^2   a^5 +a^4 +1=w^2 +w+1=0
a=worw2a5+a4+1=w2+w+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *