Menu Close

If-a-2-b-2-c-2-1-and-b-ic-1-a-z-then-show-that-a-ib-i-c-1-iz-1-iz-




Question Number 104201 by I want to learn more last updated on 20/Jul/20
If   a^2  + b^2  + c^2   =  1     and      b  +  ic  =  (1  +  a)z,  then show that      ((a  +  ib)/(i  +  c))   =   ((1  +  iz)/(1  −  iz))
$$\mathrm{If}\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{1}\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\mathrm{b}\:\:+\:\:\mathrm{ic}\:\:=\:\:\left(\mathrm{1}\:\:+\:\:\mathrm{a}\right)\mathrm{z}, \\ $$$$\mathrm{then}\:\mathrm{show}\:\mathrm{that}\:\:\:\:\:\:\frac{\mathrm{a}\:\:+\:\:\mathrm{ib}}{\mathrm{i}\:\:+\:\:\mathrm{c}}\:\:\:=\:\:\:\frac{\mathrm{1}\:\:+\:\:\mathrm{iz}}{\mathrm{1}\:\:−\:\:\mathrm{iz}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *