Menu Close

if-a-2-b-c-b-2-c-a-c-2-a-b-1-then-find-the-value-of-1-1-a-1-1-b-1-1-c-




Question Number 36978 by jayanta11 last updated on 07/Jun/18
if  (a^2 /(b+c)) = (b^2 /(c+a)) = (c^2 /(a+b)) = 1 then find the value of   (1/(1+a)) + (1/(1+b)) + (1/(1+c))
ifa2b+c=b2c+a=c2a+b=1thenfindthevalueof11+a+11+b+11+c
Commented by behi83417@gmail.com last updated on 07/Jun/18
a^2 =b+c,b^2 =c+a,c^2 =a+b  ⇒a^2 +b^2 +c^2 =2a+2b+2c  (a−1)^2 +(b−1)^2 +(c−1)^2 =3⇒  a−1=b−1=c−1=1⇒a=b=c=2  Σ(1/(1+a))=3×(1/3)=1  or:  (1/(1+a))=((a^2 /(b+c))/(a+(a^2 /(b+c))))=(a^2 /(a^2 +a(b+c)))=(a/(a+b+c))  ⇒Σ(1/(1+a))=Σ(a/(a+b+c))=((a+b+c)/(a+b+c))=1 .■
a2=b+c,b2=c+a,c2=a+ba2+b2+c2=2a+2b+2c(a1)2+(b1)2+(c1)2=3a1=b1=c1=1a=b=c=2Σ11+a=3×13=1or:11+a=a2b+ca+a2b+c=a2a2+a(b+c)=aa+b+cΣ11+a=Σaa+b+c=a+b+ca+b+c=1.◼
Answered by ajfour last updated on 07/Jun/18
a^2 +a=b^2 +b=c^2 +c=a+b+c=s  ⇒a(a+1)=b(b+1)=c(c+1)=s  (1/(1+a))+(1/(1+b))+(1/(1+c))=(a/s)+(b/s)+(c/s)=1 .
a2+a=b2+b=c2+c=a+b+c=sa(a+1)=b(b+1)=c(c+1)=s11+a+11+b+11+c=as+bs+cs=1.

Leave a Reply

Your email address will not be published. Required fields are marked *