Menu Close

if-a-2b-3c-4d-5e-6f-0-find-the-maximum-of-a-b-c-d-e-f-a-2-b-2-c-2-d-2-e-2-f-2-




Question Number 182000 by mr W last updated on 03/Dec/22
if a−2b+3c−4d+5e−6f=0, find  the maximum of  ((∣a+b+c+d+e+f∣)/( (√(a^2 +b^2 +c^2 +d^2 +e^2 +f^2 )))).
ifa2b+3c4d+5e6f=0,findthemaximumofa+b+c+d+e+fa2+b2+c2+d2+e2+f2.
Commented by mr W last updated on 04/Dec/22
A(0,0,0,0,0,0)  B(1,−2,3,−4,5,−6)  P(1,1,1,1,1,1)  ∣AP∣=(√(1^2 +1^2 +1^2 +1^2 +1^2 +1^2 ))=(√6)  ∣AB∣=(√(1^2 +(−2)^2 +3^2 +(−4)^2 +5^2 +(−6)^2 ))=(√(91))  cos θ=((1−2+3−4+5−6)/( (√6)×(√(91))))=−(3/( (√6)×(√(91))))  sin θ=((√(6×91−3^2 ))/( (√6)×(√(91))))=((√(537))/( (√6)×(√(91))))  ∣AP∣ sin θ=(√6)×((√(537))/( (√6)×(√(91))))=(√((537)/(91)))  ⇒(((∣a+b+c+d+e+f∣)/( (√(a^2 +b^2 +c^2 +d^2 +e^2 +f^2 )))))_(max)  = (√((537)/(91)))
A(0,0,0,0,0,0)B(1,2,3,4,5,6)P(1,1,1,1,1,1)AP∣=12+12+12+12+12+12=6AB∣=12+(2)2+32+(4)2+52+(6)2=91cosθ=12+34+566×91=36×91sinθ=6×91326×91=5376×91APsinθ=6×5376×91=53791(a+b+c+d+e+fa2+b2+c2+d2+e2+f2)max=53791

Leave a Reply

Your email address will not be published. Required fields are marked *