Menu Close

If-A-2c-a-c-b-B-c-a-0-and-C-1-c-a-1-b-are-three-points-then-prove-that-i-AB-2-BC-2-CA-2-c-2-1-c-1-2-ii-AB-2-BC-2-AC-2-




Question Number 191498 by MATHEMATICSAM last updated on 24/Apr/23
If A(((2c)/a) , (c/b)), B((c/a) , 0) and C(((1 + c)/a) , (1/b))  are three points, then prove that,   i.  (((AB)^2  + (BC)^2 )/((CA)^2 )) = ((c^2  + 1)/((c − 1)^2 ))  ii. (AB)^2  + (BC)^2  − (AC)^2  = ((2c(a^2  + b^2 ))/(a^2 b^2 ))
$$\mathrm{If}\:\mathrm{A}\left(\frac{\mathrm{2}{c}}{{a}}\:,\:\frac{{c}}{{b}}\right),\:\mathrm{B}\left(\frac{{c}}{{a}}\:,\:\mathrm{0}\right)\:\mathrm{and}\:\mathrm{C}\left(\frac{\mathrm{1}\:+\:{c}}{{a}}\:,\:\frac{\mathrm{1}}{{b}}\right) \\ $$$$\mathrm{are}\:\mathrm{three}\:\mathrm{points},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that},\: \\ $$$$\mathrm{i}.\:\:\frac{\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} }{\left(\mathrm{CA}\right)^{\mathrm{2}} }\:=\:\frac{{c}^{\mathrm{2}} \:+\:\mathrm{1}}{\left({c}\:−\:\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{ii}.\:\left(\mathrm{AB}\right)^{\mathrm{2}} \:+\:\left(\mathrm{BC}\right)^{\mathrm{2}} \:−\:\left(\mathrm{AC}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{2}{c}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *