Menu Close

If-a-3-b-3-0-prove-that-log-a-b-1-2-log-a-log-b-log-3-given-a-b-0-




Question Number 40872 by scientist last updated on 28/Jul/18
If a^3 +b^3 =0,  prove that log (a+b)=(1/2)(log a +log b +log 3)  [given a+b≠0]
$${If}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{0},\:\:{prove}\:{that}\:\mathrm{log}\:\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{a}\:+\mathrm{log}\:{b}\:+\mathrm{log}\:\mathrm{3}\right) \\ $$$$\left[{given}\:{a}+{b}\neq\mathrm{0}\right] \\ $$
Commented by MrW3 last updated on 29/Jul/18
I don′t think there are such real values  for a and b.    such that log (a+b)=(1/2)(log a +log b +log 3)  is defined, we have a>0, b>0, then  we get a^3 +b^3 >0, but a^3 +b^3 =0.
$${I}\:{don}'{t}\:{think}\:{there}\:{are}\:{such}\:{real}\:{values} \\ $$$${for}\:{a}\:{and}\:{b}. \\ $$$$ \\ $$$${such}\:{that}\:\mathrm{log}\:\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{a}\:+\mathrm{log}\:{b}\:+\mathrm{log}\:\mathrm{3}\right) \\ $$$${is}\:{defined},\:{we}\:{have}\:{a}>\mathrm{0},\:{b}>\mathrm{0},\:{then} \\ $$$${we}\:{get}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} >\mathrm{0},\:{but}\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{0}. \\ $$
Commented by maxmathsup by imad last updated on 29/Jul/18
you are right sir its a complex logarithme because a^2 −ab +b^2 >0
$${you}\:{are}\:{right}\:{sir}\:{its}\:{a}\:{complex}\:{logarithme}\:{because}\:{a}^{\mathrm{2}} −{ab}\:+{b}^{\mathrm{2}} >\mathrm{0} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
a^3 +b^3 =(a+b)(a^2 −ab+b^2 )=0  given a+b not equals to 0  so a^2 −ab+b^2 =0  (a+b)^2 −2ab−ab=0  a+b=(√(3ab))   ln(a+b)=(1/2)(lna+lnb+ln3)
$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\left({a}+{b}\right)\left({a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${given}\:{a}+{b}\:{not}\:{equals}\:{to}\:\mathrm{0} \\ $$$${so}\:{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}−{ab}=\mathrm{0} \\ $$$${a}+{b}=\sqrt{\mathrm{3}{ab}}\: \\ $$$${ln}\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({lna}+{lnb}+{ln}\mathrm{3}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *