Menu Close

If-a-3-b-3-0-prove-that-log-a-b-1-2-log-a-log-b-log-3-given-a-b-0-




Question Number 40872 by scientist last updated on 28/Jul/18
If a^3 +b^3 =0,  prove that log (a+b)=(1/2)(log a +log b +log 3)  [given a+b≠0]
Ifa3+b3=0,provethatlog(a+b)=12(loga+logb+log3)[givena+b0]
Commented by MrW3 last updated on 29/Jul/18
I don′t think there are such real values  for a and b.    such that log (a+b)=(1/2)(log a +log b +log 3)  is defined, we have a>0, b>0, then  we get a^3 +b^3 >0, but a^3 +b^3 =0.
Idontthinktherearesuchrealvaluesforaandb.suchthatlog(a+b)=12(loga+logb+log3)isdefined,wehavea>0,b>0,thenwegeta3+b3>0,buta3+b3=0.
Commented by maxmathsup by imad last updated on 29/Jul/18
you are right sir its a complex logarithme because a^2 −ab +b^2 >0
youarerightsiritsacomplexlogarithmebecausea2ab+b2>0
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
a^3 +b^3 =(a+b)(a^2 −ab+b^2 )=0  given a+b not equals to 0  so a^2 −ab+b^2 =0  (a+b)^2 −2ab−ab=0  a+b=(√(3ab))   ln(a+b)=(1/2)(lna+lnb+ln3)
a3+b3=(a+b)(a2ab+b2)=0givena+bnotequalsto0soa2ab+b2=0(a+b)22abab=0a+b=3abln(a+b)=12(lna+lnb+ln3)

Leave a Reply

Your email address will not be published. Required fields are marked *