Question Number 151284 by mathdanisur last updated on 19/Aug/21
$$\mathrm{if}\:\:\frac{\mathrm{a}}{\mathrm{3}^{\boldsymbol{\mathrm{x}}-\mathrm{1}} }\:=\:\frac{\mathrm{b}}{\mathrm{3}^{\boldsymbol{\mathrm{y}}+\mathrm{2}} }\:=\:\frac{\mathrm{c}}{\mathrm{3}^{\boldsymbol{\mathrm{z}}-\mathrm{1}} }\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\mathrm{find}\:\:\mathrm{abc}\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 19/Aug/21
$$\mathrm{a}=\frac{\mathrm{3}^{\mathrm{x}−\mathrm{1}} }{\mathrm{5}},\mathrm{b}=\frac{\mathrm{3}^{\mathrm{y}+\mathrm{2}} }{\mathrm{5}},\mathrm{c}=\frac{\mathrm{3}^{\mathrm{z}−\mathrm{1}} }{\mathrm{5}} \\ $$$$\mathrm{abc}=\left(\frac{\mathrm{3}^{\mathrm{x}−\mathrm{1}} }{\mathrm{5}}\right)\left(\frac{\mathrm{3}^{\mathrm{y}+\mathrm{2}} }{\mathrm{5}}\right)\left(\frac{\mathrm{3}^{\mathrm{z}−\mathrm{1}} }{\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{3}^{\left(\mathrm{x}−\mathrm{1}\right)+\left(\mathrm{y}+\mathrm{2}\right)+\left(\mathrm{z}−\mathrm{1}\right)} }{\mathrm{125}}=\frac{\mathrm{3}^{\mathrm{x}+\mathrm{y}+\mathrm{z}} }{\mathrm{125}} \\ $$
Commented by mathdanisur last updated on 19/Aug/21
$$\mathrm{Thankyou}\:\mathrm{Ser} \\ $$$$\left.\mathrm{A}\left.\mathrm{n}\left.\mathrm{s}:\:\mathrm{a}\right)\mathrm{1}/\mathrm{125}\:\:\mathrm{b}\right)\mathrm{3}/\mathrm{125}\:\:\mathrm{c}\right)\mathrm{27}/\mathrm{125} \\ $$