Menu Close

if-a-4-1-3-2-1-3-1-find-3-a-3-a-2-1-a-3-




Question Number 160190 by HongKing last updated on 25/Nov/21
if   a = (4)^(1/3)  + (2)^(1/3)  + 1  find   (3/a) + (3/a^2 ) + (1/a^3 ) = ?
ifa=43+23+1find3a+3a2+1a3=?
Answered by amin96 last updated on 25/Nov/21
a=((((2)^(1/3) )^3 −1)/( (2)^(1/3) −1))=(1/( (2)^(1/3) −1))     (1/a)(3+(3/a)+(1/a^2 ))=((2)^(1/3) −1)(3+3(2)^(1/3) −3+((2)^(1/3) −1)^2 )=  =((2)^(1/3) −1)(3(2)^(1/3) +(4)^(1/3) −2(2)^(1/3) +1)=((2)^(1/3) −1)((4)^(1/3) +(2)^(1/3) +1)=  =((2)^(1/3) )^3 −1=2−1=1
a=(23)31231=12311a(3+3a+1a2)=(231)(3+3233+(231)2)==(231)(323+43223+1)=(231)(43+23+1)==(23)31=21=1
Answered by mr W last updated on 25/Nov/21
a=(4)^(1/3) +(2)^(1/3) +1  a+1=(4)^(1/3) +(2)^(1/3) +2  a+1=(4)^(1/3) +(2)^(1/3) +(4)^(1/3) (2)^(1/3)   a+1=((2)^(1/3) +1+(4)^(1/3) )(2)^(1/3)   ((a+1)/a)=(2)^(1/3)   (1+(1/a))^3 =2  1+(3/a)+(3/a^2 )+(1/a^3 )=2  ⇒(3/a)+(3/a^2 )+(1/a^3 )=1
a=43+23+1a+1=43+23+2a+1=43+23+4323a+1=(23+1+43)23a+1a=23(1+1a)3=21+3a+3a2+1a3=23a+3a2+1a3=1
Answered by 1549442205PVT last updated on 16/Dec/21
Apply a^3 −b^3 =(a−b)(a^2 +ab+b)^2 we get  a = (4)^(1/3)  + (2)^(1/3)  + 1⇒(1/a)=(1/( (4)^(1/3)  + (2)^(1/3)  + 1))  =(((2)^(1/3) −1)/((^3 (√2)−1)((4)^(1/4) +^3 (√2)+1)))  =(((2)^(1/3) −1)/((^3 (√2))^3 −1))=^3 (√2)−1.Hence,(1/a)+1=^3 (√2)  (3/a)+(3/a^2 )+(1/a^3 )=((1/a)+1)^3 −1=(^3 (√2))^3 −1=1
Applya3b3=(ab)(a2+ab+b)2wegeta=43+23+11a=143+23+1=231(321)(44+32+1)=231(32)31=321.Hence,1a+1=323a+3a2+1a3=(1a+1)31=(32)31=1

Leave a Reply

Your email address will not be published. Required fields are marked *