Menu Close

If-A-4-3-1-0-use-the-fact-that-A-2-4A-3I-2-and-mathematical-induction-to-prove-A-n-3-n-1-2-A-3-3-n-2-I-if-n-1-




Question Number 40352 by scientist last updated on 20/Jul/18
If A= [((4     −3)),((1          0)) ]use the fact that   A^2 =4A−3I_2   and mathematical induction to prove    A^n =(((3^n −1))/2)A  +((3−3^n )/2)I  if n≥1
IfA=[4310]usethefactthatA2=4A3I2andmathematicalinductiontoproveAn=(3n1)2A+33n2Iifn1
Commented by prof Abdo imad last updated on 20/Jul/18
the caracteristic polynom of A is  p_c (A)=det(A−xI)= determinant (((4−x      −3)),((1              −x)))  =−x(4−x)+3 =x^2  −4x +3  kayley hamilton theorem give   A^2 −4A +3I =0 ⇒A^2  =4A−3I  ⇒  let prove by recurrence that  A^(2n)  =((3^(2n) −1)/2) A +((3−3^(2n) )/2) I    the equality is true for n=0  A^(2n+2) =A^2  {((3^(2n) −1)/2) A +((3−3^(2n) )/2) I}  =(4A−3I){((3^(2n) −1)/2) A +((3−3^(2n) )/2) I}  =2(3^(2n) −1)A^2  +2(3−3^(2n) )A −3((3^(2n) −1)/2) A  −3((3−3^(2n) )/2)I   =2(3^(2n) −1)( 4A−3I) + ((4(3−3^(2n) )−33^(2n)  +3)/2) A  −3((3−3^(2n) )/2) I  =8(3^(2n) −1)A −6(3^(2n) −1)I  + ((15−7 3^(2n) )/2) A  −3 ((3−3^(2n) )/2) I  = ((16(3^(2n) −1)+15−73^(2n) )/2) A  −((12(3^(2n) −1)+3(3−3^(2n) ))/2) A  =((9.3^(2n)  −1)/2) A −((9 3^(2n)  −3)/2) I  =((3^(2n+2) −1)/2) A+((3−3^(2n+2) )/2) I  the relation is true  at term (n+1) also we must prove by recurrence  that  A^(2n+1)   =((3^(2n+1)  −1)/2) A  +((3−3^(2n+1) )/2) I .
thecaracteristicpolynomofAispc(A)=det(AxI)=|4x31x|=x(4x)+3=x24x+3kayleyhamiltontheoremgiveA24A+3I=0A2=4A3IletprovebyrecurrencethatA2n=32n12A+332n2Itheequalityistrueforn=0A2n+2=A2{32n12A+332n2I}=(4A3I){32n12A+332n2I}=2(32n1)A2+2(332n)A332n12A3332n2I=2(32n1)(4A3I)+4(332n)332n+32A3332n2I=8(32n1)A6(32n1)I+15732n2A3332n2I=16(32n1)+15732n2A12(32n1)+3(332n)2A=9.32n12A932n32I=32n+212A+332n+22Itherelationistrueatterm(n+1)alsowemustprovebyrecurrencethatA2n+1=32n+112A+332n+12I.

Leave a Reply

Your email address will not be published. Required fields are marked *