Menu Close

If-a-and-b-0-are-the-roots-of-the-equation-x-2-ax-b-0-then-find-the-least-value-of-x-2-ax-b-x-R-




Question Number 20116 by Tinkutara last updated on 22/Aug/17
If a and b (≠ 0) are the roots of the  equation x^2  + ax + b = 0, then find the  least value of x^2  + ax + b (x ∈ R).
$$\mathrm{If}\:{a}\:\mathrm{and}\:{b}\:\left(\neq\:\mathrm{0}\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:=\:\mathrm{0},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:\left({x}\:\in\:{R}\right). \\ $$
Answered by ajfour last updated on 22/Aug/17
x^2 +ax+b=0    or  x^2 −(a+b)x+ab=0  ⇒    ab=b   ;    a+b=−a  ⇒    a=1   ;   b=−2  so equation is    x^2 +x−2=0  ⇒  least value of  y=x^2 +x−2   is  least value of  y=(x+(1/2))^2 −(9/4)  which is equal to −(9/4) at x=−(1/2) .
$${x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0}\:\:\:\:{or} \\ $$$${x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:{ab}={b}\:\:\:;\:\:\:\:{a}+{b}=−{a} \\ $$$$\Rightarrow\:\:\:\:{a}=\mathrm{1}\:\:\:;\:\:\:{b}=−\mathrm{2} \\ $$$${so}\:{equation}\:{is}\:\:\:\:{x}^{\mathrm{2}} +{x}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\:\:{least}\:{value}\:{of}\:\:{y}={x}^{\mathrm{2}} +{x}−\mathrm{2}\: \\ $$$${is}\:\:{least}\:{value}\:{of}\:\:{y}=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${which}\:{is}\:{equal}\:{to}\:−\frac{\mathrm{9}}{\mathrm{4}}\:{at}\:{x}=−\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$
Commented by Tinkutara last updated on 22/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *