Menu Close

If-a-and-b-arbitary-constants-find-a-second-order-equation-which-has-y-ae-x-b-cos-x-as-a-general-solution-




Question Number 125991 by bramlexs22 last updated on 16/Dec/20
If a and b arbitary constants,   find a second − order equation  which has y = ae^x +b cos x as a  general solution.
$${If}\:{a}\:{and}\:{b}\:{arbitary}\:{constants},\: \\ $$$${find}\:{a}\:{second}\:−\:{order}\:{equation} \\ $$$${which}\:{has}\:{y}\:=\:{ae}^{{x}} +{b}\:\mathrm{cos}\:{x}\:{as}\:{a} \\ $$$${general}\:{solution}. \\ $$
Answered by liberty last updated on 16/Dec/20
 by differentiating the given expression  we find →y′ = ae^x −b sin x   (2)                        y′′ = ae^x −b cos x   (3)  then by adding and subtracting eq (1) and (3)  gives  { ((a=((y′′+y)/(2e^x )))),((b=((y−y′′)/(2cos x)))) :}  substitution of these into eq (2) we get    y′ = ((y+y′′)/(2e^x )).e^x −((y−y′′)/(2cos x)).sin x  or (1+tan x)y′′−2y′+(1−tan x)y = 0.
$$\:{by}\:{differentiating}\:{the}\:{given}\:{expression} \\ $$$${we}\:{find}\:\rightarrow{y}'\:=\:{ae}^{{x}} −{b}\:\mathrm{sin}\:{x}\:\:\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}''\:=\:{ae}^{{x}} −{b}\:\mathrm{cos}\:{x}\:\:\:\left(\mathrm{3}\right) \\ $$$${then}\:{by}\:{adding}\:{and}\:{subtracting}\:{eq}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{3}\right) \\ $$$${gives}\:\begin{cases}{{a}=\frac{{y}''+{y}}{\mathrm{2}{e}^{{x}} }}\\{{b}=\frac{{y}−{y}''}{\mathrm{2cos}\:{x}}}\end{cases} \\ $$$${substitution}\:{of}\:{these}\:{into}\:{eq}\:\left(\mathrm{2}\right)\:{we}\:{get} \\ $$$$\:\:{y}'\:=\:\frac{{y}+{y}''}{\mathrm{2}{e}^{{x}} }.{e}^{{x}} −\frac{{y}−{y}''}{\mathrm{2cos}\:{x}}.\mathrm{sin}\:{x} \\ $$$${or}\:\left(\mathrm{1}+\mathrm{tan}\:{x}\right){y}''−\mathrm{2}{y}'+\left(\mathrm{1}−\mathrm{tan}\:{x}\right){y}\:=\:\mathrm{0}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *