Menu Close

If-A-and-B-are-two-points-on-a-circle-of-radius-r-then-prove-that-mAB-2r-




Question Number 25344 by Rasheed.Sindhi last updated on 08/Dec/17
If A and B are two points on a  circle of radius r, then prove that  mAB^(−) ≤2r.
$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{points}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{r},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{m}\overline {\mathrm{AB}}\leqslant\mathrm{2r}. \\ $$
Answered by jota+ last updated on 08/Dec/17
let  ∡AOB=2θ  mAB=2rcos θ≤2r
$${let}\:\:\measuredangle{AOB}=\mathrm{2}\theta \\ $$$${mAB}=\mathrm{2}{r}\mathrm{cos}\:\theta\leqslant\mathrm{2}{r} \\ $$
Commented by Rasheed.Sindhi last updated on 08/Dec/17
Th^α nk U!
$$\mathcal{T}{h}^{\alpha} {nk}\:{U}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *