Menu Close

If-a-and-b-positive-real-number-where-a-505-b-505-1-then-minimum-value-a-2020-b-2020-is-




Question Number 115033 by bobhans last updated on 23/Sep/20
If a and b positive real number where  a^(505)  + b^(505)  = 1, then minimum value  a^(2020)  + b^(2020)  is __
Ifaandbpositiverealnumberwherea505+b505=1,thenminimumvaluea2020+b2020is__
Answered by 1549442205PVT last updated on 23/Sep/20
Put a^(505) =x,b^(505) =y⇒x+y=1.We need  find minimum value of P=x^4 +y^4   Since x,y>0,1=x+y=((√x)−(√y))^2 +2(√(xy))≥2(√(xy))  ⇒(√(xy))≤1/2⇒xy≤1/4(1).Hence,  x^4 +y^4 =(x+y)^4 −4xy(x^2 +y^4 )−6x^2 y^2   =1−4xy[(x+y)^2 −2xy]−6x^2 y^2   =1−4xy(1−2xy)−6(xy)^2 =1−4xy+2(xy)^2   =2(xy−(1/4))^2 −3xy+(7/8)≥0−3.(1/4)+(7/8)  =(1/8).The equality ocurrs if and only  if x=y=1/2⇔a=b=^(505) (√(1/2))  Thus (a^(2020) +b^(2020) )_(min) =(1/8)  when a=b=(1/( ^(505) (√2)))
Puta505=x,b505=yx+y=1.WeneedfindminimumvalueofP=x4+y4Sincex,y>0,1=x+y=(xy)2+2xy2xyxy1/2xy1/4(1).Hence,x4+y4=(x+y)44xy(x2+y4)6x2y2=14xy[(x+y)22xy]6x2y2=14xy(12xy)6(xy)2=14xy+2(xy)2=2(xy14)23xy+7803.14+78=18.Theequalityocurrsifandonlyifx=y=1/2a=b=50512Thus(a2020+b2020)min=18whena=b=15052
Answered by bemath last updated on 23/Sep/20

Leave a Reply

Your email address will not be published. Required fields are marked *