Menu Close

If-A-B-0-pi-2-such-that-3sin-2-A-2sin-2-B-1-and-3sin2A-2sin2B-0-find-the-value-of-A-B-




Question Number 27820 by bmind4860 last updated on 15/Jan/18
If A,Bε(0,(π/2)) such that 3sin^2 A+2sin^2 B=1  and 3sin2A−2sin2B=0, find the value of A+B.
IfA,Bϵ(0,π2)suchthat3sin2A+2sin2B=1and3sin2A2sin2B=0,findthevalueofA+B.
Answered by ajfour last updated on 15/Jan/18
(3/2)(1−cos 2A)+1−cos 2B=1  ⇒ 3cos 2A+2cos 2B=3   ....(i)  and  since  3sin 2A=2sin 2B  9sin^2 2A=4sin^2 2B  ⇒  9−9cos^2 2A=4−4cos^2 2B  ⇒ 9cos^2 2A−4cos^2 2B=5  or  (3cos 2A−2cos 2B)(3cos 2A+2cos 2B)=5  using (i):  3cos 2A−2cos 2B=(5/3)  and as   3cos 2A+2cos 2B=3  adding the above two eqs.  6cos 2A=((14)/3)  ⇒  cos 2A=(7/9)       and  sin 2A=(√(1−((49)/(81)))) =((4(√2))/9)  subtracting them,  4cos 2B=(4/3)  ⇒   cos 2B=(1/3)      and  sin 2B=(√(1−(1/9))) =((2(√2))/3)  cos (2A+2B)=cos 2Acos 2B                                       −sin 2Asin 2B       =(7/9)×(1/3)−((4(√2))/9)×((2(√2))/3)     =−(1/3)  cos (A+B)=(√((1+cos (2A+2B))/2))        =(1/( (√3)))  A+B=cos^(−1) ((1/( (√3)))).
32(1cos2A)+1cos2B=13cos2A+2cos2B=3.(i)andsince3sin2A=2sin2B9sin22A=4sin22B99cos22A=44cos22B9cos22A4cos22B=5or(3cos2A2cos2B)(3cos2A+2cos2B)=5using(i):3cos2A2cos2B=53andas3cos2A+2cos2B=3addingtheabovetwoeqs.6cos2A=143cos2A=79andsin2A=14981=429subtractingthem,4cos2B=43cos2B=13andsin2B=119=223cos(2A+2B)=cos2Acos2Bsin2Asin2B=79×13429×223=13cos(A+B)=1+cos(2A+2B)2=13A+B=cos1(13).
Commented by bmind4860 last updated on 15/Jan/18
perfect
perfect

Leave a Reply

Your email address will not be published. Required fields are marked *