Menu Close

If-A-B-0-pi-2-such-that-3sin-2-A-2sin-2-B-1-and-3sin2A-2sin2B-0-find-the-value-of-A-B-




Question Number 27820 by bmind4860 last updated on 15/Jan/18
If A,Bε(0,(π/2)) such that 3sin^2 A+2sin^2 B=1  and 3sin2A−2sin2B=0, find the value of A+B.
$${If}\:{A},{B}\epsilon\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:{such}\:{that}\:\mathrm{3}{sin}^{\mathrm{2}} {A}+\mathrm{2}{sin}^{\mathrm{2}} {B}=\mathrm{1} \\ $$$${and}\:\mathrm{3}{sin}\mathrm{2}{A}−\mathrm{2}{sin}\mathrm{2}{B}=\mathrm{0},\:{find}\:{the}\:{value}\:{of}\:{A}+{B}. \\ $$
Answered by ajfour last updated on 15/Jan/18
(3/2)(1−cos 2A)+1−cos 2B=1  ⇒ 3cos 2A+2cos 2B=3   ....(i)  and  since  3sin 2A=2sin 2B  9sin^2 2A=4sin^2 2B  ⇒  9−9cos^2 2A=4−4cos^2 2B  ⇒ 9cos^2 2A−4cos^2 2B=5  or  (3cos 2A−2cos 2B)(3cos 2A+2cos 2B)=5  using (i):  3cos 2A−2cos 2B=(5/3)  and as   3cos 2A+2cos 2B=3  adding the above two eqs.  6cos 2A=((14)/3)  ⇒  cos 2A=(7/9)       and  sin 2A=(√(1−((49)/(81)))) =((4(√2))/9)  subtracting them,  4cos 2B=(4/3)  ⇒   cos 2B=(1/3)      and  sin 2B=(√(1−(1/9))) =((2(√2))/3)  cos (2A+2B)=cos 2Acos 2B                                       −sin 2Asin 2B       =(7/9)×(1/3)−((4(√2))/9)×((2(√2))/3)     =−(1/3)  cos (A+B)=(√((1+cos (2A+2B))/2))        =(1/( (√3)))  A+B=cos^(−1) ((1/( (√3)))).
$$\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{A}\right)+\mathrm{1}−\mathrm{cos}\:\mathrm{2}{B}=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}=\mathrm{3}\:\:\:….\left({i}\right) \\ $$$${and}\:\:{since}\:\:\mathrm{3sin}\:\mathrm{2}{A}=\mathrm{2sin}\:\mathrm{2}{B} \\ $$$$\mathrm{9sin}\:^{\mathrm{2}} \mathrm{2}{A}=\mathrm{4sin}\:^{\mathrm{2}} \mathrm{2}{B} \\ $$$$\Rightarrow\:\:\mathrm{9}−\mathrm{9cos}\:^{\mathrm{2}} \mathrm{2}{A}=\mathrm{4}−\mathrm{4cos}\:^{\mathrm{2}} \mathrm{2}{B} \\ $$$$\Rightarrow\:\mathrm{9cos}\:^{\mathrm{2}} \mathrm{2}{A}−\mathrm{4cos}\:^{\mathrm{2}} \mathrm{2}{B}=\mathrm{5} \\ $$$${or}\:\:\left(\mathrm{3cos}\:\mathrm{2}{A}−\mathrm{2cos}\:\mathrm{2}{B}\right)\left(\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}\right)=\mathrm{5} \\ $$$${using}\:\left({i}\right): \\ $$$$\mathrm{3cos}\:\mathrm{2}{A}−\mathrm{2cos}\:\mathrm{2}{B}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$${and}\:{as}\:\:\:\mathrm{3cos}\:\mathrm{2}{A}+\mathrm{2cos}\:\mathrm{2}{B}=\mathrm{3} \\ $$$${adding}\:{the}\:{above}\:{two}\:{eqs}. \\ $$$$\mathrm{6cos}\:\mathrm{2}{A}=\frac{\mathrm{14}}{\mathrm{3}}\:\:\Rightarrow\:\:\mathrm{cos}\:\mathrm{2}{A}=\frac{\mathrm{7}}{\mathrm{9}} \\ $$$$\:\:\:\:\:{and}\:\:\mathrm{sin}\:\mathrm{2}{A}=\sqrt{\mathrm{1}−\frac{\mathrm{49}}{\mathrm{81}}}\:=\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{9}} \\ $$$${subtracting}\:{them}, \\ $$$$\mathrm{4cos}\:\mathrm{2}{B}=\frac{\mathrm{4}}{\mathrm{3}}\:\:\Rightarrow\:\:\:\mathrm{cos}\:\mathrm{2}{B}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:{and}\:\:\mathrm{sin}\:\mathrm{2}{B}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{9}}}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left(\mathrm{2}{A}+\mathrm{2}{B}\right)=\mathrm{cos}\:\mathrm{2}{A}\mathrm{cos}\:\mathrm{2}{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{sin}\:\mathrm{2}{A}\mathrm{sin}\:\mathrm{2}{B} \\ $$$$\:\:\:\:\:=\frac{\mathrm{7}}{\mathrm{9}}×\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{9}}×\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\:\:\:=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\left({A}+{B}\right)=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\left(\mathrm{2}{A}+\mathrm{2}{B}\right)}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${A}+{B}=\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right). \\ $$
Commented by bmind4860 last updated on 15/Jan/18
perfect
$${perfect} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *