Menu Close

If-a-b-and-A-of-a-triangle-are-fixed-and-two-possible-values-of-the-third-side-be-c-1-and-c-2-such-that-c-1-2-c-1-c-2-c-2-2-a-2-then-find-angle-A-




Question Number 21889 by ajfour last updated on 06/Oct/17
If a,b, and A of a triangle  are   fixed and two possible values of the   third side be c_1 and c_2 such that  c_1 ^2 +c_1 c_2 +c_2 ^2 =a^2 , then find angle A.
$${If}\:{a},{b},\:{and}\:{A}\:{of}\:{a}\:{triangle}\:\:{are}\: \\ $$$${fixed}\:{and}\:{two}\:{possible}\:{values}\:{of}\:{the}\: \\ $$$${third}\:{side}\:{be}\:{c}_{\mathrm{1}} {and}\:{c}_{\mathrm{2}} {such}\:{that} \\ $$$$\boldsymbol{{c}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{1}} \boldsymbol{{c}}_{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{2}} ^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{2}} ,\:{then}\:{find}\:{angle}\:{A}. \\ $$
Answered by mrW1 last updated on 06/Oct/17
a^2 =b^2 +c^2 −2bc×cos A  ⇒c^2 −(2b cos A)c+(b^2 −a^2 )=0  c_1 +c_2 =2b cos A  c_1 c_2 =b^2 −a^2     c_1 ^2 +c_1 c_2 +c_2 ^2 =a^2   c_1 ^2 +2c_1 c_2 +c_2 ^2 =a^2 +c_1 c_2   (c_1 +c_2 )^2 =a^2 +c_1 c_2   ⇒4b^2  cos^2  A=a^2 +b^2 −a^2 =b^2   ⇒4 cos^2  A=1  ⇒cos A=±(1/2)  ⇒A=60° or 120°
$$\mathrm{a}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{2bc}×\mathrm{cos}\:\mathrm{A} \\ $$$$\Rightarrow\mathrm{c}^{\mathrm{2}} −\left(\mathrm{2b}\:\mathrm{cos}\:\mathrm{A}\right)\mathrm{c}+\left(\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{c}_{\mathrm{1}} +\mathrm{c}_{\mathrm{2}} =\mathrm{2b}\:\mathrm{cos}\:\mathrm{A} \\ $$$$\mathrm{c}_{\mathrm{1}} \mathrm{c}_{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \\ $$$$ \\ $$$$\boldsymbol{{c}}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{1}} \boldsymbol{{c}}_{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{2}} ^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{2}} \\ $$$$\boldsymbol{{c}}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}\boldsymbol{{c}}_{\mathrm{1}} \boldsymbol{{c}}_{\mathrm{2}} +\boldsymbol{{c}}_{\mathrm{2}} ^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{c}_{\mathrm{1}} \mathrm{c}_{\mathrm{2}} \\ $$$$\left(\mathrm{c}_{\mathrm{1}} +\mathrm{c}_{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} +\mathrm{c}_{\mathrm{1}} \mathrm{c}_{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\mathrm{A}=\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{A}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{A}=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{A}=\mathrm{60}°\:\mathrm{or}\:\mathrm{120}° \\ $$
Commented by ajfour last updated on 06/Oct/17
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *