Menu Close

if-a-b-and-c-are-the-dimensions-of-a-cuboid-with-the-diagonal-d-then-prove-d-a-3-b-b-3-c-c-3-a-




Question Number 149868 by mathdanisur last updated on 07/Aug/21
if  a;b  and  c  are the dimensions of  a  cuboid with the diagonal d then prove  d ≤ (√((a^3 /b) + (b^3 /c) + (c^3 /a)))
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\:\:\mathrm{and}\:\:\mathrm{c}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\:\mathrm{a} \\ $$$$\mathrm{cuboid}\:\mathrm{with}\:\mathrm{the}\:\mathrm{diagonal}\:\boldsymbol{\mathrm{d}}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{d}\:\leqslant\:\sqrt{\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{b}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{c}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{a}}} \\ $$
Answered by dumitrel last updated on 08/Aug/21
(a^3 /b)+ab≥^(am−gm) 2a^2   (b^3 /c)+cb≥^(am−gm) 2b^2   (c^3 /a)+ac≥^(am−gm) 2c^2 ⇒  ⇒(a^3 /b)+(b^3 /c)+(c^3 /b)≥2(a^2 +b^2 +c^2 )−(ab+bc+ac)≥a^2 +b^2 +c^2 =d^2
$$\frac{{a}^{\mathrm{3}} }{{b}}+{ab}\overset{{am}−{gm}} {\geqslant}\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\frac{{b}^{\mathrm{3}} }{{c}}+{cb}\overset{{am}−{gm}} {\geqslant}\mathrm{2}{b}^{\mathrm{2}} \\ $$$$\frac{{c}^{\mathrm{3}} }{{a}}+{ac}\overset{{am}−{gm}} {\geqslant}\mathrm{2}{c}^{\mathrm{2}} \Rightarrow \\ $$$$\Rightarrow\frac{{a}^{\mathrm{3}} }{{b}}+\frac{{b}^{\mathrm{3}} }{{c}}+\frac{{c}^{\mathrm{3}} }{{b}}\geqslant\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\left({ab}+{bc}+{ac}\right)\geqslant{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={d}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$
Commented by mathdanisur last updated on 08/Aug/21
Thank You Ser, cool
$$\mathrm{Thank}\:\mathrm{You}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *