Menu Close

If-a-b-and-c-are-the-roots-of-x-3-21x-35-0-what-is-the-value-of-a-b-c-a-b-c-




Question Number 129336 by bramlexs22 last updated on 15/Jan/21
If a,b and c are the roots of   x^3 −21x−35 = 0 what is the value of   (a−b)(c−a)(b−c) ?
Ifa,bandcaretherootsofx321x35=0whatisthevalueof(ab)(ca)(bc)?
Commented by MJS_new last updated on 22/Jan/21
x^3 +px+q=0  Cardano gives  u=−(q/2)+(√((q^2 /4)+(p^3 /(27))))∧v=−(q/2)−(√((q^2 /4)+(p^3 /(27))))  [and for this purpose they are allowed to be  complex]  the roots then are [ω=−(1/2)+((√3)/2)i]  a=u^(1/3) +v^(1/3)   b=ωu^(1/3) +w^2 v^(1/3)   c=ω^2 u^(1/3) +ωv^(1/3)   (a−b)(b−c)(c−a)=       [knowing that ω^3 =1, ω^(3n+k) =ω^k ]  ...  =3(ω^2 −ω)(u−v)=  =−3(√3)(u−v)i=  =−i(√(4p^3 +27q^2 ))  with p=−21∧q=−35 we get 63
x3+px+q=0Cardanogivesu=q2+q24+p327v=q2q24+p327[andforthispurposetheyareallowedtobecomplex]therootsthenare[ω=12+32i]a=u1/3+v1/3b=ωu1/3+w2v1/3c=ω2u1/3+ωv1/3(ab)(bc)(ca)=[knowingthatω3=1,ω3n+k=ωk]=3(ω2ω)(uv)==33(uv)i==i4p3+27q2withp=21q=35weget63
Commented by bramlexs22 last updated on 15/Jan/21
correct sir. but how step to got it?
correctsir.buthowsteptogotit?
Commented by liberty last updated on 15/Jan/21
my way.  let p(x) = (x−a)(x−b)(x−c) be polynomial  has the roots are a,b and c so we have  (x−a)(x−b)(x−c)=x^3 −21x−35  differentiating both sides w.r.t x gives  (x−b)(x−c)+(x−a)(x−c)+(x−a)(x−b)=3x^2 −21  putting x=a⇒3a^2 −21=(a−b)(a−c)  putting x=b⇒3b^2 −21=(b−a)(b−c)  putting x=c⇒3c^2 −21=(c−a)(c−b)  multiply three equation we get  (a−b)(a−c)(b−a)(b−c)(c−a)(c−b)=27(a^2 −7)(b^2 −7)(c^2 −7)  [ (a−b)(b−c)(c−a) ]^2 = 27(a^2 −7)(b^2 −7)(c^2 −7)  now consider the original equation   x^3 −21x = 35 ; x(x^2 −21)=35   x^2 (x^2 −21)^2 =35^2  ; let y=x^2 −7   (y+7)(y+7−21)^2 =35^2  ⇒y^3 −21y^2 −147=0  whose roots are  { ((a^2 −7 )),((b^2 −7 )),((c^2 −7)) :}  then by Vieta′s rule we get (a^2 −7)(b^2 −7)(c^2 −7)=147  finally we find [ (a−b)(b−c)(c−a) ]^2 =27×147  ⇔ (a−b)(b−c)(c−a) = ± (√(3969)) = ± 63
myway.letp(x)=(xa)(xb)(xc)bepolynomialhastherootsarea,bandcsowehave(xa)(xb)(xc)=x321x35differentiatingbothsidesw.r.txgives(xb)(xc)+(xa)(xc)+(xa)(xb)=3x221puttingx=a3a221=(ab)(ac)puttingx=b3b221=(ba)(bc)puttingx=c3c221=(ca)(cb)multiplythreeequationweget(ab)(ac)(ba)(bc)(ca)(cb)=27(a27)(b27)(c27)[(ab)(bc)(ca)]2=27(a27)(b27)(c27)nowconsidertheoriginalequationx321x=35;x(x221)=35x2(x221)2=352;lety=x27(y+7)(y+721)2=352y321y2147=0whoserootsare{a27b27c27thenbyVietasruleweget(a27)(b27)(c27)=147finallywefind[(ab)(bc)(ca)]2=27×147(ab)(bc)(ca)=±3969=±63
Commented by MJS_new last updated on 15/Jan/21
I corrected and completed
Icorrectedandcompleted
Commented by bramlexs22 last updated on 15/Jan/21
waw...thank you
wawthankyou
Commented by bemath last updated on 15/Jan/21
my method    ⇔ x^3 −21x−35 = 0         a^3 −21a−35=0...(1)        b^3 −21b−35=0...(2)   (1)−(2)⇒a^3 −b^3 −21(a−b)=0   (a−b)(a^2 +ab+b^2 )−21(a−b)=0   (a−b)(a^2 +b^2 +ab−21)=0    ⇒(a−b)^2 +3ab−21=0           (a−b)^2  = 21−3ab   similar to  { (((c−a)^2  = 21−3ac)),(((b−c)^2  = 21−3bc)) :}  so we find   [(a−b)(c−a)(b−c)]^2  = (21−3ab)(21−3ac)(21−3bc)  RHS ≡ −27(abc)^2 +189abc(a+b+c)−              1323(ab+ac+bc)+21^3   RHS≡ −27(35)^2 +189(0)−1323(−21)+21^3   RHS≡ 3969   finally we find (a−b)(c−a)(b−c) = ± (√(3969)) = ± 63
mymethodx321x35=0a321a35=0(1)b321b35=0(2)(1)(2)a3b321(ab)=0(ab)(a2+ab+b2)21(ab)=0(ab)(a2+b2+ab21)=0(ab)2+3ab21=0(ab)2=213absimilarto{(ca)2=213ac(bc)2=213bcsowefind[(ab)(ca)(bc)]2=(213ab)(213ac)(213bc)RHS27(abc)2+189abc(a+b+c)1323(ab+ac+bc)+213RHS27(35)2+189(0)1323(21)+213RHS3969finallywefind(ab)(ca)(bc)=±3969=±63

Leave a Reply

Your email address will not be published. Required fields are marked *