Menu Close

If-a-b-and-c-are-the-sides-of-a-triangle-and-a-b-c-2-then-prove-that-a-2-b-2-c-2-2abc-lt-2-




Question Number 13294 by Tinkutara last updated on 17/May/17
If a, b and c are the sides of a triangle  and a + b + c = 2, then prove that  a^2  + b^2  + c^2  + 2abc < 2
$$\mathrm{If}\:{a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{and}\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{2}{abc}\:<\:\mathrm{2} \\ $$
Commented by prakash jain last updated on 18/May/17
S=a^2 +b^2 +c^2 +2abc  4−S=(a+b+c)^2 −S  =2ab+2bc+2ca−2abc  =2(ab+bc+ca−abc)    ...(A)  a<b+c⇒2a<a+b+c⇒a<1⇒(1−a)>0  ⇒a<1 also b<1 ,c<1  (1−a)(1−b)(1−c)>0  (1−a−b+ab)(1−c)>0  1−a−b+ab−c+ac+bc−abc>0  1−(a+b+c)+(ab+bc+ca−abc)>0  −1+(ab+bc+ca−abc)>0  ⇒(ab+bc+ca−abc)>1    ...(B)  substituting B in A  4−S>2⇒2>S ■
$${S}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{abc} \\ $$$$\mathrm{4}−{S}=\left({a}+{b}+{c}\right)^{\mathrm{2}} −{S} \\ $$$$=\mathrm{2}{ab}+\mathrm{2}{bc}+\mathrm{2}{ca}−\mathrm{2}{abc} \\ $$$$=\mathrm{2}\left({ab}+{bc}+{ca}−{abc}\right)\:\:\:\:…\left({A}\right) \\ $$$${a}<{b}+{c}\Rightarrow\mathrm{2}{a}<{a}+{b}+{c}\Rightarrow{a}<\mathrm{1}\Rightarrow\left(\mathrm{1}−{a}\right)>\mathrm{0} \\ $$$$\Rightarrow{a}<\mathrm{1}\:{also}\:{b}<\mathrm{1}\:,{c}<\mathrm{1} \\ $$$$\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)>\mathrm{0} \\ $$$$\left(\mathrm{1}−{a}−{b}+{ab}\right)\left(\mathrm{1}−{c}\right)>\mathrm{0} \\ $$$$\mathrm{1}−{a}−{b}+{ab}−{c}+{ac}+{bc}−{abc}>\mathrm{0} \\ $$$$\mathrm{1}−\left({a}+{b}+{c}\right)+\left({ab}+{bc}+{ca}−{abc}\right)>\mathrm{0} \\ $$$$−\mathrm{1}+\left({ab}+{bc}+{ca}−{abc}\right)>\mathrm{0} \\ $$$$\Rightarrow\left({ab}+{bc}+{ca}−{abc}\right)>\mathrm{1}\:\:\:\:…\left({B}\right) \\ $$$${substituting}\:{B}\:{in}\:{A} \\ $$$$\mathrm{4}−{S}>\mathrm{2}\Rightarrow\mathrm{2}>{S}\:\blacksquare \\ $$
Commented by RasheedSindhi last updated on 18/May/17
Xcellent!!!
$$\mathbb{X}\mathrm{cellent}!!! \\ $$
Commented by prakash jain last updated on 18/May/17
Thanks
$$\mathrm{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *