Menu Close

If-a-b-and-c-are-the-sides-of-a-triangle-and-a-b-c-2-then-prove-that-a-2-b-2-c-2-2abc-lt-2-




Question Number 13294 by Tinkutara last updated on 17/May/17
If a, b and c are the sides of a triangle  and a + b + c = 2, then prove that  a^2  + b^2  + c^2  + 2abc < 2
Ifa,bandcarethesidesofatriangleanda+b+c=2,thenprovethata2+b2+c2+2abc<2
Commented by prakash jain last updated on 18/May/17
S=a^2 +b^2 +c^2 +2abc  4−S=(a+b+c)^2 −S  =2ab+2bc+2ca−2abc  =2(ab+bc+ca−abc)    ...(A)  a<b+c⇒2a<a+b+c⇒a<1⇒(1−a)>0  ⇒a<1 also b<1 ,c<1  (1−a)(1−b)(1−c)>0  (1−a−b+ab)(1−c)>0  1−a−b+ab−c+ac+bc−abc>0  1−(a+b+c)+(ab+bc+ca−abc)>0  −1+(ab+bc+ca−abc)>0  ⇒(ab+bc+ca−abc)>1    ...(B)  substituting B in A  4−S>2⇒2>S ■
S=a2+b2+c2+2abc4S=(a+b+c)2S=2ab+2bc+2ca2abc=2(ab+bc+caabc)(A)a<b+c2a<a+b+ca<1(1a)>0a<1alsob<1,c<1(1a)(1b)(1c)>0(1ab+ab)(1c)>01ab+abc+ac+bcabc>01(a+b+c)+(ab+bc+caabc)>01+(ab+bc+caabc)>0(ab+bc+caabc)>1(B)substitutingBinA4S>22>S◼
Commented by RasheedSindhi last updated on 18/May/17
Xcellent!!!
Xcellent!!!
Commented by prakash jain last updated on 18/May/17
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *