Menu Close

If-a-b-b-a-and-a-2b-then-find-the-value-of-a-2-b-2-




Question Number 82489 by niroj last updated on 21/Feb/20
     If a^b =b^a  and a=2b then find the   value of a^2 +b^2  .
$$ \\ $$$$\: \\ $$$$\mathrm{If}\:\mathrm{a}^{\mathrm{b}} =\mathrm{b}^{\mathrm{a}} \:\mathrm{and}\:\mathrm{a}=\mathrm{2b}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \:. \\ $$
Answered by mind is power last updated on 21/Feb/20
⇒(2b)^b =b^(2b)   ⇒b^b (2^b −b^b )=0  since b≠0 cause⇒a=0 and 0^0  not defind  ⇒2^b −b^b =0⇒bln(2)=bln(b)⇒b(ln(2)−ln(b))=0  ⇒b=2⇒a=4  a^2 +b^2 =4+16=20
$$\Rightarrow\left(\mathrm{2}{b}\right)^{{b}} ={b}^{\mathrm{2}{b}} \\ $$$$\Rightarrow{b}^{{b}} \left(\mathrm{2}^{{b}} −{b}^{{b}} \right)=\mathrm{0} \\ $$$${since}\:{b}\neq\mathrm{0}\:{cause}\Rightarrow{a}=\mathrm{0}\:{and}\:\mathrm{0}^{\mathrm{0}} \:{not}\:{defind} \\ $$$$\Rightarrow\mathrm{2}^{{b}} −{b}^{{b}} =\mathrm{0}\Rightarrow{bln}\left(\mathrm{2}\right)={bln}\left({b}\right)\Rightarrow{b}\left({ln}\left(\mathrm{2}\right)−{ln}\left({b}\right)\right)=\mathrm{0} \\ $$$$\Rightarrow{b}=\mathrm{2}\Rightarrow{a}=\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{4}+\mathrm{16}=\mathrm{20} \\ $$
Commented by niroj last updated on 21/Feb/20
 thank you.
$$\:{thank}\:{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *