Question Number 36019 by math1967 last updated on 27/May/18

Answered by ajfour last updated on 27/May/18
![let b=pa , c=qa ⇒ a(1+p+q)=0 ...(i) (shall be using this in many steps that follow..) l.h.s. = ((1/(p−q))+(p/(q−1))+(q/(1−p)))(((p−q)/1)+((q−1)/p)+((1−p)/q)) =1+(((q−1))/(p(p−q)))+(((1−p))/(q(p−q)))+ ((p(p−q))/(q−1))+1+((p(1−p))/(q(q−1)))+ ((q(p−q))/((1−p)))+((q(q−1))/(p(1−p)))+1 =3+((q^2 −q+p−p^2 )/(pq(p−q)))+((pq(p−q)+p(1−p))/(q(q−1)))+ ((pq(p−q)+q(q−1))/(p(1−p))) =3+((1−p−q)/(pq))+((p[qp−q^2 +1−p])/(q(q−1)))+ ((q[p^2 −pq+q−1])/(p(1−p))) =3+(2/(pq))+((p(p−q−1))/q)+((q(q−p−1))/p) =3+((2+p^2 (p−q−1)+q^2 (q−p−1))/(pq)) =3+((2+p^3 +q^3 −pq(p+q)−(p^2 +q^2 ))/(pq)) =3+((2−(p^2 +q^2 −pq)+pq−1+2pq)/(pq)) =3+((2−1+2pq+pq+pq−1+2pq)/(pq)) = 3+6 = 9 .](https://www.tinkutara.com/question/Q36020.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 27/May/18

Answered by ajfour last updated on 27/May/18
![l.h.s. = 3+Σ((a/(b−c)))[(((c−a)/b))+(((a−b)/c))] =3+Σ((a/(b−c)))(((c^2 −ac+ab−b^2 )/(bc))) =3+Σ((a^2 /(abc)))(a−b−c) =3+Σ((a^2 /(abc)))(2a) ∵ (−b−c=a) =3+2Σ(a^3 /(abc)) and as Σa^3 =3abc if Σa=0, so l.h.s. =3+2(((3abc)/(abc)))= 9 .](https://www.tinkutara.com/question/Q36028.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18
