Menu Close

If-a-b-c-0-show-that-a-b-c-b-c-a-c-a-b-b-c-a-c-a-b-a-b-c-9-




Question Number 36019 by math1967 last updated on 27/May/18
If a+b+c=0 show that  ((a/(b−c))+(b/(c−a))+(c/(a−b)))(((b−c)/a)+((c−a)/b) +((a−b)/c))=9
Ifa+b+c=0showthat(abc+bca+cab)(bca+cab+abc)=9
Answered by ajfour last updated on 27/May/18
let b=pa  ,  c=qa  ⇒ a(1+p+q)=0          ...(i)     (shall be using this in many        steps that follow..)  l.h.s. = ((1/(p−q))+(p/(q−1))+(q/(1−p)))(((p−q)/1)+((q−1)/p)+((1−p)/q))     =1+(((q−1))/(p(p−q)))+(((1−p))/(q(p−q)))+        ((p(p−q))/(q−1))+1+((p(1−p))/(q(q−1)))+            ((q(p−q))/((1−p)))+((q(q−1))/(p(1−p)))+1     =3+((q^2 −q+p−p^2 )/(pq(p−q)))+((pq(p−q)+p(1−p))/(q(q−1)))+          ((pq(p−q)+q(q−1))/(p(1−p)))     =3+((1−p−q)/(pq))+((p[qp−q^2 +1−p])/(q(q−1)))+            ((q[p^2 −pq+q−1])/(p(1−p)))     =3+(2/(pq))+((p(p−q−1))/q)+((q(q−p−1))/p)     =3+((2+p^2 (p−q−1)+q^2 (q−p−1))/(pq))     =3+((2+p^3 +q^3 −pq(p+q)−(p^2 +q^2 ))/(pq))    =3+((2−(p^2 +q^2 −pq)+pq−1+2pq)/(pq))    =3+((2−1+2pq+pq+pq−1+2pq)/(pq))    = 3+6 = 9 .
letb=pa,c=qaa(1+p+q)=0(i)(shallbeusingthisinmanystepsthatfollow..)l.h.s.=(1pq+pq1+q1p)(pq1+q1p+1pq)=1+(q1)p(pq)+(1p)q(pq)+p(pq)q1+1+p(1p)q(q1)+q(pq)(1p)+q(q1)p(1p)+1=3+q2q+pp2pq(pq)+pq(pq)+p(1p)q(q1)+pq(pq)+q(q1)p(1p)=3+1pqpq+p[qpq2+1p]q(q1)+q[p2pq+q1]p(1p)=3+2pq+p(pq1)q+q(qp1)p=3+2+p2(pq1)+q2(qp1)pq=3+2+p3+q3pq(p+q)(p2+q2)pq=3+2(p2+q2pq)+pq1+2pqpq=3+21+2pq+pq+pq1+2pqpq=3+6=9.
Commented by tanmay.chaudhury50@gmail.com last updated on 27/May/18
praisworthy...
praisworthy
Answered by ajfour last updated on 27/May/18
l.h.s. = 3+Σ((a/(b−c)))[(((c−a)/b))+(((a−b)/c))]       =3+Σ((a/(b−c)))(((c^2 −ac+ab−b^2 )/(bc)))       =3+Σ((a^2 /(abc)))(a−b−c)       =3+Σ((a^2 /(abc)))(2a)     ∵ (−b−c=a)       =3+2Σ(a^3 /(abc))  and as  Σa^3 =3abc  if  Σa=0, so    l.h.s.  =3+2(((3abc)/(abc)))= 9 .
l.h.s.=3+Σ(abc)[(cab)+(abc)]=3+Σ(abc)(c2ac+abb2bc)=3+Σ(a2abc)(abc)=3+Σ(a2abc)(2a)(bc=a)=3+2Σa3abcandasΣa3=3abcifΣa=0,sol.h.s.=3+2(3abcabc)=9.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/May/18
zLHS  3+(a/(b−c))×(((c−a)/b)+((a−b)/c))+(b/(c−a))×(((b−c)/a)+((a−b)/c))+  (c/(a−b))×(((b−c)/a)+((c−a)/b))  let us calculate   (a/(b−c))×(((c−a)/b)+((a−b)/c))  (a/(b−c))×(((c^2 −ac+ab−b^2 )/(bc)))  =(a/(b−c))×{((a(b−c)−(b^2 −c^2 ))/(bc))}  =(a/(b−c))×{(((b−c)(a−b−c))/(bc))}  =(a/(bc))×(a−b−c)  =(a/(bc))×2a   since a+b+c=0   so (−b−c)=a  =2(a^3 /(abc))  other two also give ((2b^3 )/(abc)) and ((2c^3 )/(abc))  so  3+((2a^3 )/(abc))+((2b^3 )/(abc))+((2c^3 )/(abc))  3+2(((a^3 +b^3 +c^3 )/(abc)))  3+2(((3abc)/(abc)))     =3+6  =9  if a+b+c=0  a^3 +b^3 +c^3 =3abc
zLHS3+abc×(cab+abc)+bca×(bca+abc)+cab×(bca+cab)letuscalculateabc×(cab+abc)abc×(c2ac+abb2bc)=abc×{a(bc)(b2c2)bc}=abc×{(bc)(abc)bc}=abc×(abc)=abc×2asincea+b+c=0so(bc)=a=2a3abcothertwoalsogive2b3abcand2c3abcso3+2a3abc+2b3abc+2c3abc3+2(a3+b3+c3abc)3+2(3abcabc)=3+6=9ifa+b+c=0a3+b3+c3=3abc

Leave a Reply

Your email address will not be published. Required fields are marked *