Question Number 181138 by Agnibhoo98 last updated on 22/Nov/22
$$\mathrm{If}\:{a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{then}, \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} \:+\:{bc}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{b}^{\mathrm{2}} \:+\:{ca}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{c}^{\mathrm{2}} \:+\:{ab}}\:=\:? \\ $$
Answered by som(math1967) last updated on 22/Nov/22
$$\:{a}+{b}+{c}=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =−{ab}−{ca} \\ $$$${b}^{\mathrm{2}} =−{ab}−{bc} \\ $$$${c}^{\mathrm{2}} =−{ca}−{bc} \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +{bc}={a}^{\mathrm{2}} −{ab}−{ca}+{bc}=\left({a}−{b}\right)\left({a}−{c}\right) \\ $$$$\mathrm{2}{b}^{\mathrm{2}} +{ca}=\left({b}−{c}\right)\left({b}−{a}\right) \\ $$$$\mathrm{2}{c}^{\mathrm{2}} +{ab}=\left({c}−{a}\right)\left({c}−{b}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} \:+\:{bc}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{b}^{\mathrm{2}} \:+\:{ca}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{c}^{\mathrm{2}} \:+\:{ab}} \\ $$$$=\frac{\mathrm{1}}{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{\mathrm{1}}{\left({b}−{c}\right)\left({b}−{a}\right)}+\frac{\mathrm{1}}{\left({c}−{a}\right)\left({c}−{b}\right)} \\ $$$$=−\frac{\mathrm{1}}{\left({a}−{b}\right)\left({c}−{a}\right)}−\frac{\mathrm{1}}{\left({b}−{c}\right)\left({a}−{b}\right)}−\frac{\mathrm{1}}{\left({c}−{a}\right)\left({b}−{c}\right)} \\ $$$$=−\left[\frac{{b}−{c}+{c}−{a}+{a}−{b}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\right]=\mathrm{0} \\ $$