Menu Close

If-a-b-c-1-a-3-b-3-c-3-4-find-1-a-bc-1-b-ca-1-c-ab-




Question Number 130036 by liberty last updated on 22/Jan/21
If  { ((a+b+c = 1)),((a^3 +b^3 +c^3  = 4)) :}   find (1/(a+bc)) + (1/(b+ca)) + (1/(c+ab)).
If{a+b+c=1a3+b3+c3=4find1a+bc+1b+ca+1c+ab.
Answered by mnjuly1970 last updated on 22/Jan/21
solution: {_(a^3 +b^3 +c^3 =4) ^(a+b+c=1)    K=(1/(a+bc))+(1/(b+ac)) +(1/(c+ab))=?  a+b+c−1=0    a^3 +b^3 +(c−1)^3 =3ab(c−1)  (euler  identity)  a^3 +b^3 +c^3 −3c^2 +3c−1=3abc−3ab  1−c^2 +c=ab(c−1)           (cyclic)  1=(c−1)(c+ab)....(1)  ∴ 1=(a−1)(a+bc)....(2)    1=(b−1)(b+ac)...(3)   ∴ K=(1/(a+bc))+(1/(b+ca)) +(1/(c+ab))       K=^( (1),(2),(3)) a−1+b−1+c−1         K=a+b+c−3=1−3=−2  ✓
solution:{a3+b3+c3=4a+b+c=1K=1a+bc+1b+ac+1c+ab=?a+b+c1=0a3+b3+(c1)3=3ab(c1)(euleridentity)a3+b3+c33c2+3c1=3abc3ab1c2+c=ab(c1)(cyclic)1=(c1)(c+ab).(1)1=(a1)(a+bc).(2)1=(b1)(b+ac)(3)K=1a+bc+1b+ca+1c+abK=(1),(2),(3)a1+b1+c1K=a+b+c3=13=2
Answered by EDWIN88 last updated on 22/Jan/21
(1) a+b =1−c⇒(a+b)^3 =(1−c)^3         c^2 −c−ab(a+b)=1  (2)(a+b)^2 =(1−c)^2 ⇒a^2 +b^2 +c^2 =1−2c−2ab   (a+b+c)^2 −2ab−2ac−2bc=1−2c−2ab   c−ac−bc = 0 →c(1−(a+b))=0   a+b = 1 ∧ c = 0   (3) from (1/(a+bc)) + (1/(b+ca)) + (1/(c+ab)) = (1/a)+(1/b)+(1/(ab))   ((a+b)/(ab)) + (1/(ab)) = ((a+b+1)/(ab)) = (2/(ab))  and from eq(1) c^2 −c−ab(a+b)=1 give   −ab = (1/(a+b)) ⇒ab=−(1/(a+b)) =−1  therefore we get (2/(ab)) = (2/(−1))=−2
(1)a+b=1c(a+b)3=(1c)3c2cab(a+b)=1(2)(a+b)2=(1c)2a2+b2+c2=12c2ab(a+b+c)22ab2ac2bc=12c2abcacbc=0c(1(a+b))=0a+b=1c=0(3)from1a+bc+1b+ca+1c+ab=1a+1b+1aba+bab+1ab=a+b+1ab=2abandfromeq(1)c2cab(a+b)=1giveab=1a+bab=1a+b=1thereforeweget2ab=21=2

Leave a Reply

Your email address will not be published. Required fields are marked *