Menu Close

if-a-b-c-1-then-prove-that-a-1-a-b-1-b-c-1-c-are-the-sides-of-a-triangle-




Question Number 155481 by mathdanisur last updated on 01/Oct/21
if  a;b;c∈[1;∞)  then prove that  a^(1/a)  ; b^(1/b)  ; c^(1/c)   are the sides of a triangle.
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}\in\left[\mathrm{1};\infty\right) \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\:\mathrm{a}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}} \:;\:\mathrm{b}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}} \:;\:\mathrm{c}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{c}}}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}. \\ $$
Answered by mr W last updated on 01/Oct/21
for x∈[1,∞):  1≤x^(1/x) ≤e^(1/e) ≈1.4447  that means 1≤a^(1/a) ,b^(1/b) ,c^(1/c) ≤e^(1/e) .  say a^(1/a) ≤b^(1/b) ≤c^(1/c) ,  c^(1/c) ≤e^(1/e) ≈1.4447  a^(1/a) +b^(1/b) ≥1+1=2  ⇒a^(1/a) +b^(1/b) >c^(1/c)   i.e. a^(1/a) ,b^(1/b) ,c^(1/c)  can form a triangle.
$${for}\:{x}\in\left[\mathrm{1},\infty\right): \\ $$$$\mathrm{1}\leqslant{x}^{\frac{\mathrm{1}}{{x}}} \leqslant{e}^{\frac{\mathrm{1}}{{e}}} \approx\mathrm{1}.\mathrm{4447} \\ $$$${that}\:{means}\:\mathrm{1}\leqslant{a}^{\frac{\mathrm{1}}{{a}}} ,{b}^{\frac{\mathrm{1}}{{b}}} ,{c}^{\frac{\mathrm{1}}{{c}}} \leqslant{e}^{\frac{\mathrm{1}}{{e}}} . \\ $$$${say}\:{a}^{\frac{\mathrm{1}}{{a}}} \leqslant{b}^{\frac{\mathrm{1}}{{b}}} \leqslant{c}^{\frac{\mathrm{1}}{{c}}} , \\ $$$${c}^{\frac{\mathrm{1}}{{c}}} \leqslant{e}^{\frac{\mathrm{1}}{{e}}} \approx\mathrm{1}.\mathrm{4447} \\ $$$${a}^{\frac{\mathrm{1}}{{a}}} +{b}^{\frac{\mathrm{1}}{{b}}} \geqslant\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow{a}^{\frac{\mathrm{1}}{{a}}} +{b}^{\frac{\mathrm{1}}{{b}}} >{c}^{\frac{\mathrm{1}}{{c}}} \\ $$$${i}.{e}.\:{a}^{\frac{\mathrm{1}}{{a}}} ,{b}^{\frac{\mathrm{1}}{{b}}} ,{c}^{\frac{\mathrm{1}}{{c}}} \:{can}\:{form}\:{a}\:{triangle}. \\ $$
Commented by mathdanisur last updated on 01/Oct/21
Very nice solution, thank you Ser
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{solution},\:\mathrm{thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *