Menu Close

if-a-b-c-1-then-prove-that-a-1-a-b-1-b-c-1-c-are-the-sides-of-a-triangle-




Question Number 155481 by mathdanisur last updated on 01/Oct/21
if  a;b;c∈[1;∞)  then prove that  a^(1/a)  ; b^(1/b)  ; c^(1/c)   are the sides of a triangle.
ifa;b;c[1;)thenprovethata1a;b1b;c1carethesidesofatriangle.
Answered by mr W last updated on 01/Oct/21
for x∈[1,∞):  1≤x^(1/x) ≤e^(1/e) ≈1.4447  that means 1≤a^(1/a) ,b^(1/b) ,c^(1/c) ≤e^(1/e) .  say a^(1/a) ≤b^(1/b) ≤c^(1/c) ,  c^(1/c) ≤e^(1/e) ≈1.4447  a^(1/a) +b^(1/b) ≥1+1=2  ⇒a^(1/a) +b^(1/b) >c^(1/c)   i.e. a^(1/a) ,b^(1/b) ,c^(1/c)  can form a triangle.
forx[1,):1x1xe1e1.4447thatmeans1a1a,b1b,c1ce1e.saya1ab1bc1c,c1ce1e1.4447a1a+b1b1+1=2a1a+b1b>c1ci.e.a1a,b1b,c1ccanformatriangle.
Commented by mathdanisur last updated on 01/Oct/21
Very nice solution, thank you Ser
Verynicesolution,thankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *