Menu Close

if-a-b-c-3-a-2-b-2-c-2-5-a-3-b-3-c-3-27-find-a-100-b-100-c-100-




Question Number 171749 by Mikenice last updated on 20/Jun/22
if a+b+c=3,a^2 +b^2 +c^2 =5,a^3 +b^3 +c^3 =27. find a^(100) +b^(100) +c^(100) .
ifa+b+c=3,a2+b2+c2=5,a3+b3+c3=27.finda100+b100+c100.
Answered by floor(10²Eta[1]) last updated on 20/Jun/22
(a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+ac+bc)  9=5+2(ab+ac+bc)⇒ab+ac+bc=2  (a^2 +b^2 +c^2 )(a+b+c)=a^3 +b^3 +c^3 +a^2 b+a^2 c+ab^2 +b^2 c+ac^2 +bc^2   15=27+ab(a+b)+ac(a+c)+bc(b+c)  −12=ab(3−c)+ac(3−b)+bc(3−a)  −12=3(ab+ac+bc)−3abc  −12=6−3abc⇒abc=6  let a, b, c be the roots of x^3 +Ax^2 +Bx+C  =(x−a)(x−b)(x−c)  =x^3 −x^2 (a+b+c)+x(ab+ac+bc)−abc  =x^3 −3x^2 +2x−6=0  x=3 is a root  ⇒x^3 −3x^2 +2x−6=(x−3)(x^2 +mx+2)  =x^3 +(m−3)x^2 +(2−3m)x−6  ⇒m−3=−3 and 2−3m=2  m=0  x^3 −3x^2 +2x−6=(x−3)(x^2 +2)=0  x=3, x^2 =−2⇒x=±i(√2)   a=3, b=i(√2), c=−i(√2)  a^(100) +b^(100) +c^(100) =3^(100) +2^(50) +2^(50) =3^(100) +2^(51)
(a+b+c)2=a2+b2+c2+2(ab+ac+bc)9=5+2(ab+ac+bc)ab+ac+bc=2(a2+b2+c2)(a+b+c)=a3+b3+c3+a2b+a2c+ab2+b2c+ac2+bc215=27+ab(a+b)+ac(a+c)+bc(b+c)12=ab(3c)+ac(3b)+bc(3a)12=3(ab+ac+bc)3abc12=63abcabc=6leta,b,cbetherootsofx3+Ax2+Bx+C=(xa)(xb)(xc)=x3x2(a+b+c)+x(ab+ac+bc)abc=x33x2+2x6=0x=3isarootx33x2+2x6=(x3)(x2+mx+2)=x3+(m3)x2+(23m)x6m3=3and23m=2m=0x33x2+2x6=(x3)(x2+2)=0x=3,x2=2x=±i2a=3,b=i2,c=i2a100+b100+c100=3100+250+250=3100+251
Commented by Mikenice last updated on 20/Jun/22
thankd sir
thankdsir
Commented by Tawa11 last updated on 20/Jun/22
Great sir
Greatsir
Answered by mr W last updated on 20/Jun/22
let p_n =a^n +b^n +c^n   p_1 =e_1 =3  p_2 =e_1 p_1 −2e_2  ⇒5=3^2 −2e_2  ⇒e_2 =2  p_3 =e_1 p_2 −e_2 p_1 +3e_3  ⇒27=3×5−2×3+3e_3  ⇒e_3 =6  p_n =e_1 p_(n−1) −e_2 p_(n−2) +e_3 p_(n−3)   p_n =3p_(n−1) −2p_(n−2) +6p_(n−3)   r^3 −3r^2 +2r−6=0  (r−3)(r^2 +2)=0  ⇒r=3, ±i(√2)=(√2)e^(±((πi)/2))   p_n =A×3^n +2^(n/2) (B×e^((nπi)/2) +C×e^(−((nπi)/2)) )  we get from p_1 =3, p_2 =5, p_3 =27  A=B=C=1  ⇒p_n =3^n +2^((n/2)+1)  cos ((n𝛑)/2)  ⇒p_(100) =3^(100) +2^(50+1) ×cos 50π=3^(100) +2^(51)   ⇒p_(101) =3^(101) +2^((103)/2) ×cos ((101π)/2)=3^(101)   ⇒p_(102) =3^(102) +2^(51+1) ×cos 51π=3^(102) −2^(52)
letpn=an+bn+cnp1=e1=3p2=e1p12e25=322e2e2=2p3=e1p2e2p1+3e327=3×52×3+3e3e3=6pn=e1pn1e2pn2+e3pn3pn=3pn12pn2+6pn3r33r2+2r6=0(r3)(r2+2)=0r=3,±i2=2e±πi2pn=A×3n+2n2(B×enπi2+C×enπi2)wegetfromp1=3,p2=5,p3=27A=B=C=1pn=3n+2n2+1cosnπ2p100=3100+250+1×cos50π=3100+251p101=3101+21032×cos101π2=3101p102=3102+251+1×cos51π=3102252
Commented by Tawa11 last updated on 20/Jun/22
Great sir
Greatsir
Commented by floor(10²Eta[1]) last updated on 20/Jun/22
what is p_1 , ... and e_1 , ..
whatisp1,ande1,..
Commented by mr W last updated on 20/Jun/22
see Q74970
seeQ74970

Leave a Reply

Your email address will not be published. Required fields are marked *