Menu Close

If-A-B-C-are-angles-of-a-triangle-show-that-tan-1-cot-Acot-B-tan-1-cot-Bcot-C-tan-1-cot-Ccot-A-tan-1-1-8cos-Acos-Bcos-C-sin-2-2A-sin-2-2B-sin-2-2C-




Question Number 54536 by 951172235v last updated on 05/Feb/19
If A,B,C are angles of a triangle show that  tan^(−1) (cot Acot B)+tan^(−1) (cot Bcot C)+tan^(−1) (cot Ccot A)  = tan^(−1) {1+((8cos Acos Bcos C)/(sin^2 2A+sin^2 2B+sin^2 2C))}
IfA,B,Careanglesofatriangleshowthattan1(cotAcotB)+tan1(cotBcotC)+tan1(cotCcotA)=tan1{1+8cosAcosBcosCsin22A+sin22B+sin22C}
Answered by 951172235v last updated on 08/Feb/19
A+B+C =Λ^−     tan A+tan B+tan C = tan Atan Btan tan C  tan α =cot Acot B    tan β =cot Bcot C    tan γ =cot Ccot A  tan α+tan β+tan γ =1  tan (α+β+γ) =((Σtan α−tan αtan βtan γ)/(1−Σtan αtan β))                 =     ((1−(cot Acot Bcot C)^2 )/(1−cot Acot Bcot C(cot A+cot B+cot C)))                =((tan Atan Btan C−cot Acot Bcot C)/(Σtan A−Σcot A))                = ((tan Atan Btan C−cot Acot Bcot C)/(Σ(((−cos 2A)/(sin 2A)))))                = ((8(sin Asin Bsin C)^2 −8(cos Acos Bcos C)^2 )/(−Σsin 2A(sin 2Bcos 2C+sin 2Ccos 2B)))                = (((1/2){(Σsin 2A)^2 −[1+Σcos 2A]^2 })/(Σsin^2 2A))           =(((1/2){2Σsin^2 A −4Σcos 2A−4})/(Σsin^2 2A))           = ((Σsin^2 2A+8cos Acos Bcos C)/(Σsin^2 2A))            =1+ ((8cos Acos Bcos C)/(Σsin^2 2A))  α+β+γ =tan^(−1) {1+((8cos Acos Bcos C)/(Σsin^2 2A))}  ans.
A+B+C=ΛtanA+tanB+tanC=tanAtanBtantanCtanα=cotAcotBtanβ=cotBcotCtanγ=cotCcotAtanα+tanβ+tanγ=1tan(α+β+γ)=Σtanαtanαtanβtanγ1Σtanαtanβ=1(cotAcotBcotC)21cotAcotBcotC(cotA+cotB+cotC)=tanAtanBtanCcotAcotBcotCΣtanAΣcotA=tanAtanBtanCcotAcotBcotCΣ(cos2Asin2A)=8(sinAsinBsinC)28(cosAcosBcosC)2Σsin2A(sin2Bcos2C+sin2Ccos2B)=12{(Σsin2A)2[1+Σcos2A]2}Σsin22A=12{2Σsin2A4Σcos2A4}Σsin22A=Σsin22A+8cosAcosBcosCΣsin22A=1+8cosAcosBcosCΣsin22Aα+β+γ=tan1{1+8cosAcosBcosCΣsin22A}ans.

Leave a Reply

Your email address will not be published. Required fields are marked *