Menu Close

If-A-B-C-are-angles-of-a-triangle-show-that-tan-1-cot-Acot-B-tan-1-cot-Bcot-C-tan-1-cot-Ccot-A-tan-1-1-8cos-Acos-Bcos-C-sin-2-2A-sin-2-2B-sin-2-2C-




Question Number 54536 by 951172235v last updated on 05/Feb/19
If A,B,C are angles of a triangle show that  tan^(−1) (cot Acot B)+tan^(−1) (cot Bcot C)+tan^(−1) (cot Ccot A)  = tan^(−1) {1+((8cos Acos Bcos C)/(sin^2 2A+sin^2 2B+sin^2 2C))}
$$\mathrm{If}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{are}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Acot}\:\mathrm{B}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Bcot}\:\mathrm{C}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{cot}\:\mathrm{Ccot}\:\mathrm{A}\right) \\ $$$$=\:\mathrm{tan}^{−\mathrm{1}} \left\{\mathrm{1}+\frac{\mathrm{8cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2B}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2C}}\right\} \\ $$
Answered by 951172235v last updated on 08/Feb/19
A+B+C =Λ^−     tan A+tan B+tan C = tan Atan Btan tan C  tan α =cot Acot B    tan β =cot Bcot C    tan γ =cot Ccot A  tan α+tan β+tan γ =1  tan (α+β+γ) =((Σtan α−tan αtan βtan γ)/(1−Σtan αtan β))                 =     ((1−(cot Acot Bcot C)^2 )/(1−cot Acot Bcot C(cot A+cot B+cot C)))                =((tan Atan Btan C−cot Acot Bcot C)/(Σtan A−Σcot A))                = ((tan Atan Btan C−cot Acot Bcot C)/(Σ(((−cos 2A)/(sin 2A)))))                = ((8(sin Asin Bsin C)^2 −8(cos Acos Bcos C)^2 )/(−Σsin 2A(sin 2Bcos 2C+sin 2Ccos 2B)))                = (((1/2){(Σsin 2A)^2 −[1+Σcos 2A]^2 })/(Σsin^2 2A))           =(((1/2){2Σsin^2 A −4Σcos 2A−4})/(Σsin^2 2A))           = ((Σsin^2 2A+8cos Acos Bcos C)/(Σsin^2 2A))            =1+ ((8cos Acos Bcos C)/(Σsin^2 2A))  α+β+γ =tan^(−1) {1+((8cos Acos Bcos C)/(Σsin^2 2A))}  ans.
$$\mathrm{A}+\mathrm{B}+\mathrm{C}\:=\overset{−} {\Lambda}\:\: \\ $$$$\mathrm{tan}\:\mathrm{A}+\mathrm{tan}\:\mathrm{B}+\mathrm{tan}\:\mathrm{C}\:=\:\mathrm{tan}\:\mathrm{Atan}\:\mathrm{Btan}\:\mathrm{tan}\:\mathrm{C} \\ $$$$\mathrm{tan}\:\alpha\:=\mathrm{cot}\:\mathrm{Acot}\:\mathrm{B}\:\:\:\:\mathrm{tan}\:\beta\:=\mathrm{cot}\:\mathrm{Bcot}\:\mathrm{C}\:\:\:\:\mathrm{tan}\:\gamma\:=\mathrm{cot}\:\mathrm{Ccot}\:\mathrm{A} \\ $$$$\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta+\mathrm{tan}\:\gamma\:=\mathrm{1} \\ $$$$\mathrm{tan}\:\left(\alpha+\beta+\gamma\right)\:=\frac{\Sigma\mathrm{tan}\:\alpha−\mathrm{tan}\:\alpha\mathrm{tan}\:\beta\mathrm{tan}\:\gamma}{\mathrm{1}−\Sigma\mathrm{tan}\:\alpha\mathrm{tan}\:\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\:\:\:\frac{\mathrm{1}−\left(\mathrm{cot}\:\mathrm{Acot}\:\mathrm{Bcot}\:\mathrm{C}\right)^{\mathrm{2}} }{\mathrm{1}−\mathrm{cot}\:\mathrm{Acot}\:\mathrm{Bcot}\:\mathrm{C}\left(\mathrm{cot}\:\mathrm{A}+\mathrm{cot}\:\mathrm{B}+\mathrm{cot}\:\mathrm{C}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{tan}\:\mathrm{Atan}\:\mathrm{Btan}\:\mathrm{C}−\mathrm{cot}\:\mathrm{Acot}\:\mathrm{Bcot}\:\mathrm{C}}{\Sigma\mathrm{tan}\:\mathrm{A}−\Sigma\mathrm{cot}\:\mathrm{A}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{tan}\:\mathrm{Atan}\:\mathrm{Btan}\:\mathrm{C}−\mathrm{cot}\:\mathrm{Acot}\:\mathrm{Bcot}\:\mathrm{C}}{\Sigma\left(\frac{−\mathrm{cos}\:\mathrm{2A}}{\mathrm{sin}\:\mathrm{2A}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{8}\left(\mathrm{sin}\:\mathrm{Asin}\:\mathrm{Bsin}\:\mathrm{C}\right)^{\mathrm{2}} −\mathrm{8}\left(\mathrm{cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}\right)^{\mathrm{2}} }{−\Sigma\mathrm{sin}\:\mathrm{2A}\left(\mathrm{sin}\:\mathrm{2Bcos}\:\mathrm{2C}+\mathrm{sin}\:\mathrm{2Ccos}\:\mathrm{2B}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\Sigma\mathrm{sin}\:\mathrm{2A}\right)^{\mathrm{2}} −\left[\mathrm{1}+\Sigma\mathrm{cos}\:\mathrm{2A}\right]^{\mathrm{2}} \right\}}{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{A}\:−\mathrm{4}\Sigma\mathrm{cos}\:\mathrm{2A}−\mathrm{4}\right\}}{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}+\mathrm{8cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{1}+\:\frac{\mathrm{8cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}} \\ $$$$\alpha+\beta+\gamma\:=\mathrm{tan}^{−\mathrm{1}} \left\{\mathrm{1}+\frac{\mathrm{8cos}\:\mathrm{Acos}\:\mathrm{Bcos}\:\mathrm{C}}{\Sigma\mathrm{sin}\:^{\mathrm{2}} \mathrm{2A}}\right\}\:\:\mathrm{ans}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *