Menu Close

If-a-b-c-are-in-A-P-show-that-1-b-c-1-c-a-1-b-a-are-in-A-P-




Question Number 177932 by Spillover last updated on 11/Oct/22
If a,b,c are in A.P show that  (1/( (√b)+(√c))),(1/( (√c) +(√a))),(1/( (√b)+(√a))),are in A.P
Ifa,b,careinA.Pshowthat1b+c,1c+a,1b+a,areinA.P
Answered by Ar Brandon last updated on 11/Oct/22
a, b, c in AP ⇒b−a=c−b=d (common diff)  If u_1 =(1/( (√b)+(√c))), u_2 =(1/( (√c)+(√b))), u_3 =(1/( (√b)+(√a))) are in AP  then u_2  is the arithmetic mean of u_1  and u_3   ⇒ u_1 +u_3 =2u_2   (1/( (√b)+(√c))), (1/( (√c)+(√a))), (1/( (√b)+(√a))) ⇔ (((√c)−(√b))/(c−b)), (((√c)−(√a))/(c−a)), (((√b)−(√a))/(b−a))  ⇔(((√c)−(√b))/d), (((√c)−(√a))/(2d)), (((√b)−(√a))/d)  [c−a=(c−b)+(b−a)=2d]  Now u_1 =(((√c)−(√b))/d), u_2 =(((√c)−(√a))/(2d)), u_3 =(((√b)−(√a))/d)  u_1 +u_3 =(((√c)−(√b))/d)+(((√b)−(√a))/d)=(((√c)−(√a))/d)=2u_2
a,b,cinAPba=cb=d(commondiff)Ifu1=1b+c,u2=1c+b,u3=1b+aareinAPthenu2isthearithmeticmeanofu1andu3u1+u3=2u21b+c,1c+a,1b+acbcb,caca,babacbd,ca2d,bad[ca=(cb)+(ba)=2d]Nowu1=cbd,u2=ca2d,u3=badu1+u3=cbd+bad=cad=2u2

Leave a Reply

Your email address will not be published. Required fields are marked *