Menu Close

if-a-b-c-are-in-H-P-then-prove-that-a-b-c-b-c-a-c-a-b-arw-also-in-H-P-




Question Number 40236 by scientist last updated on 17/Jul/18
if a b c are in H.P then prove that (a/(b+c)),(b/(c+a)),(c/(a+b))  arw  also in H.P.
$${if}\:{a}\:{b}\:{c}\:{are}\:{in}\:{H}.{P}\:{then}\:{prove}\:{that}\:\frac{{a}}{{b}+{c}},\frac{{b}}{{c}+{a}},\frac{{c}}{{a}+{b}}\:\:{arw} \\ $$$${also}\:{in}\:{H}.{P}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
a,b,c  H.P  so (1/a),(1/b),(1/c) in A.P  (2/b)=(1/a)+(1/c)  to prove (a/(b+c)),(b/(c+a)),(c/(a+b)) in H.P  if we can prove reciprocal are in A.P  ((b+c)/a),((c+a)/b),((a+b)/c)  are in A.P  now (1/a),(1/b),(1/c)  are in A.P  multiply a+b+c with each term..results are   in A.P  ((a+b+c)/a),((a+b+c)/b),((a+b+c)/c)  in A.P  1+((b+c)/a),1+((a+c)/b),1+((a+b)/c)  inA.P  ((b+c)/a),((a+c)/b),((a+b)/c)  inA.P  (a/(b+c)),(b/(a+c)),(c/(a+b))  are in H.P    proved
$${a},{b},{c}\:\:{H}.{P} \\ $$$${so}\:\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}},\frac{\mathrm{1}}{{c}}\:{in}\:{A}.{P} \\ $$$$\frac{\mathrm{2}}{{b}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}} \\ $$$${to}\:{prove}\:\frac{{a}}{{b}+{c}},\frac{{b}}{{c}+{a}},\frac{{c}}{{a}+{b}}\:{in}\:{H}.{P} \\ $$$${if}\:{we}\:{can}\:{prove}\:{reciprocal}\:{are}\:{in}\:{A}.{P} \\ $$$$\frac{{b}+{c}}{{a}},\frac{{c}+{a}}{{b}},\frac{{a}+{b}}{{c}}\:\:{are}\:{in}\:{A}.{P} \\ $$$${now}\:\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}},\frac{\mathrm{1}}{{c}}\:\:{are}\:{in}\:{A}.{P} \\ $$$${multiply}\:{a}+{b}+{c}\:{with}\:{each}\:{term}..{results}\:{are}\: \\ $$$${in}\:{A}.{P} \\ $$$$\frac{{a}+{b}+{c}}{{a}},\frac{{a}+{b}+{c}}{{b}},\frac{{a}+{b}+{c}}{{c}}\:\:{in}\:{A}.{P} \\ $$$$\mathrm{1}+\frac{{b}+{c}}{{a}},\mathrm{1}+\frac{{a}+{c}}{{b}},\mathrm{1}+\frac{{a}+{b}}{{c}}\:\:{inA}.{P} \\ $$$$\frac{{b}+{c}}{{a}},\frac{{a}+{c}}{{b}},\frac{{a}+{b}}{{c}}\:\:{inA}.{P} \\ $$$$\frac{{a}}{{b}+{c}},\frac{{b}}{{a}+{c}},\frac{{c}}{{a}+{b}}\:\:{are}\:{in}\:{H}.{P}\:\:\:\:{proved} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *