Menu Close

If-A-B-C-are-the-angles-of-a-triangle-then-2sin-A-2-cosec-B-2-sin-C-2-sinAcot-B-2-cos-A-is-1-Independent-of-A-B-C-2-Function-of-A-B-C-3-Function-of-A-B-4-Function-of-B-C-




Question Number 18797 by Tinkutara last updated on 29/Jul/17
If A, B, C are the angles of a triangle,  then 2sin(A/2)cosec(B/2)sin(C/2) − sinAcot(B/2)  − cos A is  (1) Independent of A, B, C  (2) Function of A, B, C  (3) Function of A, B  (4) Function of B, C
IfA,B,Caretheanglesofatriangle,then2sinA2cosecB2sinC2sinAcotB2cosAis(1)IndependentofA,B,C(2)FunctionofA,B,C(3)FunctionofA,B(4)FunctionofB,C
Answered by behi.8.3.4.1.7@gmail.com last updated on 30/Jul/17
((2sin(A/2).sin(C/2))/(sin(B/2)))−((2sin(A/2)cos(A/2)cos(B/2))/(sin(B/2)))−cosA=  =((2sin(A/2)(sin(C/2)−cos(A/2)cos(B/2)))/(sin(B/2)))−cosA=  −2sin^2 (A/2)−(1−2sin^2 (A/2))=−1 .■  ⇒answer (1).  note:sin(C/2)=sin(90−((A+B)/2))=cos((A+B)/2).
2sinA2.sinC2sinB22sinA2cosA2cosB2sinB2cosA==2sinA2(sinC2cosA2cosB2)sinB2cosA=2sin2A2(12sin2A2)=1.◼answer(1).note:sinC2=sin(90A+B2)=cosA+B2.
Commented by Tinkutara last updated on 30/Jul/17
Thank you very much behi Sir!
ThankyouverymuchbehiSir!

Leave a Reply

Your email address will not be published. Required fields are marked *