Menu Close

If-a-b-c-are-the-roots-of-the-equation-x-3-6x-2-4x-3-0-find-the-equation-with-roots-a-b-b-c-a-c-




Question Number 86855 by jagoll last updated on 01/Apr/20
If a,b ,c are the roots of the equation  x^3 +6x^2 −4x+3 = 0 . find the   equation with roots a+b , b+c , a+c ?
Ifa,b,caretherootsoftheequationx3+6x24x+3=0.findtheequationwithrootsa+b,b+c,a+c?
Answered by john santu last updated on 01/Apr/20
by vieta   (i) a+b+c = −6 , ab+bc+ac = −4  abc =− 3  we seek p,q,r where x^3 +px^2 +qx+r =0  here we start  p = −(2a+2b+2c) = 12  q = (a+b)(b+c)+(a+b)(a+c)+(b+c)(a+c)  q = (−6−c)(−6−a)+(−6−c)(−6−b)+(−6−a)(−6−b)  q = 36×3 −6(2a+2b+2c)+ab+ac+bc  q = 108−72−4 = 32  r = (a+b)(b+c)(a+c)   r = (−6−c)(−6−a)(−6−b)  r = −(216+36(a+b+c)+6(ab+bc+ac)+abc)  r = −(216+36(−6)+6(−4)−3)  r = −27  so the required equation is   x^3 +12x^2 +32x−27 =0
byvieta(i)a+b+c=6,ab+bc+ac=4abc=3weseekp,q,rwherex3+px2+qx+r=0herewestartp=(2a+2b+2c)=12q=(a+b)(b+c)+(a+b)(a+c)+(b+c)(a+c)q=(6c)(6a)+(6c)(6b)+(6a)(6b)q=36×36(2a+2b+2c)+ab+ac+bcq=108724=32r=(a+b)(b+c)(a+c)r=(6c)(6a)(6b)r=(216+36(a+b+c)+6(ab+bc+ac)+abc)r=(216+36(6)+6(4)3)r=27sotherequiredequationisx3+12x2+32x27=0
Commented by MJS last updated on 01/Apr/20
it must be  x^3 +12x^2 +32x−27=0
itmustbex3+12x2+32x27=0
Commented by john santu last updated on 01/Apr/20
yes sir. i mistake calculate
yessir.imistakecalculate
Commented by john santu last updated on 01/Apr/20
why x = t − (a/3) ?
whyx=ta3?
Commented by jagoll last updated on 01/Apr/20
it is cardano method sir
itiscardanomethodsir
Commented by MJS last updated on 01/Apr/20
to eliminate the square factor  generally  x^n +c_(n−1) x^(n−1) +c_(n−2) x^(n−2) +...+c_0 =0  let x=t−(c_(n−1) /n)  ⇒  t^n +0t^(n−1) +γ_(n−2) t^(n−2) +...+γ_0 =0    i.e.  x^2 +c_1 x+c_0 =0  x=t−(c_1 /2)  t^2 −(c_1 ^2 /4)+c_0 =0  ⇒ t=±(√((c_1 ^2 /4)−c_0 ))  leads to the well−known formula  x=−(c_1 /2)±(√((c_1 ^2 /4)−c_0 ))
toeliminatethesquarefactorgenerallyxn+cn1xn1+cn2xn2++c0=0letx=tcn1ntn+0tn1+γn2tn2++γ0=0i.e.x2+c1x+c0=0x=tc12t2c124+c0=0t=±c124c0leadstothewellknownformulax=c12±c124c0
Commented by MJS last updated on 01/Apr/20
another thing  x^3 +ax^2 +bx+c=0  with solutions x=α, β, γ  let x=t−(a/3)  t^3 −(((a^2 −3b))/3)t+((2a^3 −9ab+27c)/(27))=0  now change to  t^3 −(((a^2 −3b))/3)t−((2a^3 −9ab+27c)/(27))=0  and let t=x+((2a)/3)  x^3 +2ax^2 +(a^2 +b)x+ab−c=0  will have the solutions α+β, α+γ, β+γ  can you prove it?
anotherthingx3+ax2+bx+c=0withsolutionsx=α,β,γletx=ta3t3(a23b)3t+2a39ab+27c27=0nowchangetot3(a23b)3t2a39ab+27c27=0andlett=x+2a3x3+2ax2+(a2+b)x+abc=0willhavethesolutionsα+β,α+γ,β+γcanyouproveit?
Commented by john santu last updated on 01/Apr/20
waw....super sir
waw.supersir

Leave a Reply

Your email address will not be published. Required fields are marked *