Question Number 35080 by math1967 last updated on 15/May/18
$${If}\:\frac{{a}}{{b}+{c}}\:+\frac{{b}}{{c}+{a}}\:+\frac{{c}}{{a}+{b}}=\mathrm{1}\:{then}\:{prove}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:+\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:+\frac{{c}^{\mathrm{2}} }{{a}+{b}}=\mathrm{0} \\ $$
Answered by ajfour last updated on 15/May/18
$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}=\mathrm{1} \\ $$$$\left({a}+{b}+{c}\right)\left[\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\right]={a}+{b}+{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….\left({i}\right) \\ $$$${now}\:{let}\:\:\frac{{a}^{\mathrm{2}} }{{b}+{c}}+\frac{{b}^{\mathrm{2}} }{{c}+{a}}+\frac{{c}^{\mathrm{2}} }{{a}+{b}}=\:{q} \\ $$$$\left({i}\right)\:{gives} \\ $$$${q}+\frac{{a}\left({b}+{c}\right)}{{b}+{c}}+\frac{{b}\left({c}+{a}\right)}{{c}+{a}}+\frac{{c}\left({a}+{b}\right)}{{a}+{b}}={a}+{b}+{c} \\ $$$$\:\:\:{q}=\:\frac{{a}^{\mathrm{2}} }{{b}+{c}}+\frac{{b}^{\mathrm{2}} }{{c}+{a}}+\frac{{c}^{\mathrm{2}} }{{a}+{b}}\:=\:\mathrm{0}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 15/May/18
$$=\frac{{a}^{\mathrm{2}} }{{b}+{c}}+{a}+\frac{{b}^{\mathrm{2}} }{{c}+{a}}+{b}+\frac{{c}^{\mathrm{2}} }{{a}+{b}}+{c}−\left({a}+{b}+{c}\right) \\ $$$$\frac{{a}^{\mathrm{2}} +{ab}+{ac}}{{b}+{c}}+\frac{{b}^{\mathrm{2}} +{bc}+{ab}}{{c}+{a}}+\frac{{c}^{\mathrm{2}} +{ac}+{bc}}{{a}+{b}}−\left({a}+{b}+{c}\right) \\ $$$$=\frac{{a}\left({a}+{b}+{c}\right)}{{b}+{c}}+\frac{{b}\left({a}+{b}+{c}\right)}{{c}+{a}}+\frac{{c}\left({a}+{b}+{c}\right)}{{a}+{b}}−\left({a}+{b}+{c}\right) \\ $$$$=\left({a}+{b}+{c}\right)\left(\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}−\mathrm{1}\right) \\ $$$$=\left({a}+{b}+{c}\right)\left(\mathrm{1}−\mathrm{1}\right) \\ $$$$=\mathrm{0} \\ $$