Menu Close

If-a-b-c-d-1-a-2-b-2-c-2-d-2-2-a-3-b-3-c-3-d-3-3-a-4-b-4-c-4-d-4-4-Evaluate-




Question Number 147791 by Tawa11 last updated on 23/Jul/21
If       a  +  b  +  c  +  d   =   1            a^2   +  b^2   +  c^2   +  d^2   =  2            a^3   +  b^3   +  c^3   +  d^3   =  3            a^4   +  b^4   +  c^4   +  d^4   =  4  Evaluate:               a^6   +  b^6   +  c^6   +  d^6
Ifa+b+c+d=1a2+b2+c2+d2=2a3+b3+c3+d3=3a4+b4+c4+d4=4Evaluate:a6+b6+c6+d6
Commented by prakash jain last updated on 25/Jul/21
g(k)=(1/(1−ka))=1+ka+k^2 a^2 +..  f(k)=(1/(1−ka))+(1/(1−kb))+(1/(1−kc))+(1/(1−kd))  f(k)=((4+A_1 k+A_2 k^2 +A_3 k^3 )/(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^2 ))  A_1 =−3(a+b+c+d)  B_1 =−(a+b+c+d)⇒A_1 =3B_1   A_2 =2(ab+bc+ad+bc+bd+cd)=2B_2   A_3 =−(abc+abd+acd+bcd)=B_3   f(k)=4+k(a+b+c+d)+k^2 (a^2 +b^2 +c^2 +d^2 )..  Let us denote a^n +b^n +c^n +d^n =u_n   f(k)=4+ku_1 +k^2 u_2 +k^3 u_3 +k^4 u_4 +...  4+A_1 k+A_2 k^2 +A_3 k^3 =     (1+B_1 k+B_2 k^2 +B_3 k^3 )(4+ku_1 +k^2 u_2 +k^3 u_3 +k^4 u_4 +k^5 u_5 +k^6 u6+...)  Given u_1 =1, u_2 =2, u_3 =3, u_4 =4  Comparing coefficients  A_1 =u_1 +4B_1 ⇒3B_1 =1+4B_1          ⇒B_1 =−1,A_1 =−3  A_2 =u_2 +u_1 B_1 +4B_2 =2−1+4B_2         ⇒2B_2 =1+4B_2 ⇒B_2 =((−1)/2),A_2 =−1  A_3 =u_3 +B_1 u_2 +B_2 u_1 +4B_3         ⇒B_3 =3−2−(1/2)+4B_3 ⇒B_3 =A_3 =−(1/6)  0=u_4 +B_1 u_3 +B_2 u_2 +B_3 u_1 +4B_4   ⇒0=4−3−(1/2)×2−(1/6)+4B_4 ⇒B_4 =(1/(24))  0=u_5 +B_1 u_4 +B_2 u_3 +B_3 u_2 +B_4 u_1       u_1 ..u_4 ,B_1 ...B_4  are known u_5  can be      calculated  similary  0=u_6 +B_1 u_5 +B_2 u_4 +B_3 u_3 +B_4 u_2        u_1 ...u_5  are known and you can       calculate u_6 =a^6 +b^6 +c^6 +d^6
g(k)=11ka=1+ka+k2a2+..f(k)=11ka+11kb+11kc+11kdf(k)=4+A1k+A2k2+A3k31+B1k+B2k2+B3k3+B4k2A1=3(a+b+c+d)B1=(a+b+c+d)A1=3B1A2=2(ab+bc+ad+bc+bd+cd)=2B2A3=(abc+abd+acd+bcd)=B3f(k)=4+k(a+b+c+d)+k2(a2+b2+c2+d2)..Letusdenotean+bn+cn+dn=unf(k)=4+ku1+k2u2+k3u3+k4u4+4+A1k+A2k2+A3k3=(1+B1k+B2k2+B3k3)(4+ku1+k2u2+k3u3+k4u4+k5u5+k6u6+)Givenu1=1,u2=2,u3=3,u4=4ComparingcoefficientsA1=u1+4B13B1=1+4B1B1=1,A1=3A2=u2+u1B1+4B2=21+4B22B2=1+4B2B2=12,A2=1A3=u3+B1u2+B2u1+4B3B3=3212+4B3B3=A3=160=u4+B1u3+B2u2+B3u1+4B40=4312×216+4B4B4=1240=u5+B1u4+B2u3+B3u2+B4u1u1..u4,B1B4areknownu5canbecalculatedsimilary0=u6+B1u5+B2u4+B3u3+B4u2u1u5areknownandyoucancalculateu6=a6+b6+c6+d6
Commented by prakash jain last updated on 25/Jul/21
u_5 −4−(3/2)−(1/3)+(1/(24))=0  u_5 =((96+36+8−1)/(24))=((139)/(24))  u_6 −((139)/(24))−(1/2)×4−(1/6)×3+(1/(24))×2  u_6 =((139)/(24))+2+(1/2)−(1/(12))=((139+48+12−2)/(24))  =((197)/(24))  a^6 +b^6 +c^6 +d^6 =((197)/(24))    I haven′t checked numerical calculation  thoroughly so please recheck these.  You can use this method to find  any u_n =a^n +b^n +c^n +d^n
u543213+124=0u5=96+36+8124=13924u61392412×416×3+124×2u6=13924+2+12112=139+48+12224=19724a6+b6+c6+d6=19724Ihaventcheckednumericalcalculationthoroughlysopleaserecheckthese.Youcanusethismethodtofindanyun=an+bn+cn+dn
Commented by Tawa11 last updated on 25/Jul/21
Thanks sir. I appreciate. God bless you.
Thankssir.Iappreciate.Godblessyou.
Answered by Rasheed.Sindhi last updated on 23/Jul/21
Let b=pa,c=qa,d=ra  (i)⇒a(1+p+q+r)=1       ⇒p+q+r=1/a−1=(1−a)/a...A  (ii)⇒a^2 (1+p^2 +q^2 +r^2 )=2     ⇒p^2 +q^2 +r^2 =2/a^2 −1=(2−a^2 )/a^2 ...B  (iii)⇒p^3 +q^3 +r^3 =(3−a^3 )/a^3 ...C  (iv)⇒p^4 +q^4 +r^4 =(4−a^4 )/a^4 ...D  A⇒(p+q+r)^2 ={(1−a)/a}^2     p^2 +q^2 +r^2 +2(pq+qr+rp)=(((1−a)/a))^2     ((2−a^2 )/a^2 )+2(pq+qr+rp)=(((1−a)/a))^2    2(pq+qr+rp)=(((1−a)/a))^2 −((2−a^2 )/a^2 )   pq+qr+rp=(((1−a)^2 −2+a^2 )/(2a^2 ))  C⇒p^3 +q^3 +r^3 =((3−a^3 )/a^3 )      p^3 +q^3 +r^3 −3pqr=((3−a^3 )/a^3 )−3pqr  (p+q+r)(p^2 +q^2 +r^2 −(pq+qr+rp) )                                             =((3−a^3 )/a^3 )−3pqr  3pqr=((3−a^3 )/a^3 )−(((1−a)/a))(((2−a^2 )/a^2 )−(((1−a)^2 −2+a^2 )/(2a^2 )))  pqr=((3−a^3 )/(3a^3 ))−(((1−a)/(3a)))(((2−a^2 )/a^2 )−(((1−a)^2 −2+a^2 )/(2a^2 )))
Letb=pa,c=qa,d=ra(i)a(1+p+q+r)=1p+q+r=1/a1=(1a)/aA(ii)a2(1+p2+q2+r2)=2p2+q2+r2=2/a21=(2a2)/a2B(iii)p3+q3+r3=(3a3)/a3C(iv)p4+q4+r4=(4a4)/a4DA(p+q+r)2={(1a)/a}2p2+q2+r2+2(pq+qr+rp)=(1aa)22a2a2+2(pq+qr+rp)=(1aa)22(pq+qr+rp)=(1aa)22a2a2pq+qr+rp=(1a)22+a22a2Cp3+q3+r3=3a3a3p3+q3+r33pqr=3a3a33pqr(p+q+r)(p2+q2+r2(pq+qr+rp))=3a3a33pqr3pqr=3a3a3(1aa)(2a2a2(1a)22+a22a2)pqr=3a33a3(1a3a)(2a2a2(1a)22+a22a2)
Commented by Tawa11 last updated on 23/Jul/21
Thanks sir. God bless you.
Thankssir.Godblessyou.
Answered by mr W last updated on 23/Jul/21
p_k =a^k +b^k +c^k +d^k   e_1 =p_1 =1  2e_2 =e_1 p_1 −p_2 =1−2=−1 ⇒e_2 =−(1/2)  3e_3 =e_2 p_1 −e_1 p_2 +p_3 =−(1/2)−2+3=(1/2) ⇒e_3 =(1/6)  4e_4 =e_3 p_1 −e_2 p_2 +e_1 p_3 −p_4 =(1/6)+1+3−4=(1/6) ⇒e_4 =(1/(24))  0=e_4 p_1 −e_3 p_2 +e_2 p_3 −e_1 p_4 +p_5    ⇒p_5 =−(1/(24))+(1/3)+(3/2)+4=((139)/(24))  0=−e_4 p_2 +e_3 p_3 −e_2 p_4 +e_1 p_5 −p_6    ⇒p_6 =−(1/(12))+(1/2)+2+((139)/(24))=((197)/(24))    generally  p_n =p_(n−1) +(p_(n−2) /2)+(p_(n−3) /6)−(p_(n−4) /(24))  or  p_n =a^n +b^n +c^n +d^n   a,b,c,d are roots of equation  x^4 −x^3 −(1/2)x^2 −(1/6)x+(1/(24))=0
pk=ak+bk+ck+dke1=p1=12e2=e1p1p2=12=1e2=123e3=e2p1e1p2+p3=122+3=12e3=164e4=e3p1e2p2+e1p3p4=16+1+34=16e4=1240=e4p1e3p2+e2p3e1p4+p5p5=124+13+32+4=139240=e4p2+e3p3e2p4+e1p5p6p6=112+12+2+13924=19724generallypn=pn1+pn22+pn36pn424orpn=an+bn+cn+dna,b,c,darerootsofequationx4x312x216x+124=0
Commented by Tawa11 last updated on 23/Jul/21
Thanks sir. God bless you.
Thankssir.Godblessyou.
Commented by mr W last updated on 23/Jul/21
https://en.m.wikipedia.org/wiki/Newton%27s_identities
Commented by Rasheed.Sindhi last updated on 23/Jul/21
Wonderful method sir!  But I′m feeling  difficulity in  understanding.
Wonderfulmethodsir!ButImfeelingdifficulityinunderstanding.
Commented by mr W last updated on 23/Jul/21
see also Q74970
seealsoQ74970
Commented by Tawa11 last updated on 23/Jul/21
Sir, which sequence you use to get the  P_n . Just the sequence.
Sir,whichsequenceyouusetogetthePn.Justthesequence.
Commented by Tawa11 last updated on 23/Jul/21
Or there is a format to get the  P_n
OrthereisaformattogetthePn
Commented by Tawa11 last updated on 24/Jul/21
I grab now, you used   e_1   −  e_2   +  e_3   −  e_4
Igrabnow,youusede1e2+e3e4
Commented by peter frank last updated on 24/Jul/21
 thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *