Menu Close

if-a-b-c-d-63-and-a-b-c-d-N-find-the-maximum-value-of-ab-bc-cd-




Question Number 192856 by universe last updated on 29/May/23
 if a+b+c +d  = 63 and a,b,c,d ∈ N find      the maximum value of ab+bc+cd = ?
$$\:{if}\:{a}+{b}+{c}\:+{d}\:\:=\:\mathrm{63}\:{and}\:{a},{b},{c},{d}\:\in\:\mathbb{N}\:{find}\: \\ $$$$\:\:\:{the}\:{maximum}\:{value}\:{of}\:{ab}+{bc}+{cd}\:=\:? \\ $$
Answered by Frix last updated on 29/May/23
32+31+0+0=63  32×31=992
$$\mathrm{32}+\mathrm{31}+\mathrm{0}+\mathrm{0}=\mathrm{63} \\ $$$$\mathrm{32}×\mathrm{31}=\mathrm{992} \\ $$
Commented by AST last updated on 30/May/23
Commented by AST last updated on 30/May/23
If N^∗ ,then 991. But if N_0 ,then 992.
$${If}\:{N}^{\ast} ,{then}\:\mathrm{991}.\:{But}\:{if}\:{N}_{\mathrm{0}} ,{then}\:\mathrm{992}. \\ $$
Commented by AST last updated on 30/May/23
a,b,c,d∈N, 0∉N(by definition)
$${a},{b},{c},{d}\in\mathbb{N},\:\mathrm{0}\notin\mathbb{N}\left({by}\:{definition}\right) \\ $$
Commented by Frix last updated on 30/May/23
Some define  N={0, 1, 2, 3, ...} and N^★ =N\{0}  others  N={1, 2, 3, 4, ...} and N_0 =N∪{0}  It had been dicussed here several times  before.
$$\mathrm{Some}\:\mathrm{define} \\ $$$$\mathbb{N}=\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:…\right\}\:\mathrm{and}\:\mathbb{N}^{\bigstar} =\mathbb{N}\backslash\left\{\mathrm{0}\right\} \\ $$$$\mathrm{others} \\ $$$$\mathbb{N}=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:…\right\}\:\mathrm{and}\:\mathbb{N}_{\mathrm{0}} =\mathbb{N}\cup\left\{\mathrm{0}\right\} \\ $$$$\mathrm{It}\:\mathrm{had}\:\mathrm{been}\:\mathrm{dicussed}\:\mathrm{here}\:\mathrm{several}\:\mathrm{times} \\ $$$$\mathrm{before}. \\ $$
Commented by Frix last updated on 30/May/23
Yes.
$$\mathrm{Yes}. \\ $$
Answered by nikif99 last updated on 30/May/23
if N^∗  then (a,b,c,d)=(1,31,30,1) or  (1,30,31,1), with max=991.
$${if}\:\mathbb{N}^{\ast} \:{then}\:\left({a},{b},{c},{d}\right)=\left(\mathrm{1},\mathrm{31},\mathrm{30},\mathrm{1}\right)\:{or} \\ $$$$\left(\mathrm{1},\mathrm{30},\mathrm{31},\mathrm{1}\right),\:{with}\:{max}=\mathrm{991}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *