Menu Close

If-a-b-c-d-gt-0-And-1-a-1-2-b-1-3-c-1-4-d-1-1-Then-find-a-a-1-2b-b-1-3c-c-1-4d-d-1-




Question Number 173377 by Shrinava last updated on 10/Jul/22
If  a,b,c,d>0  And  (1/(a+1)) + (2/(b+1)) + (3/(c+1)) + (4/(d+1)) = 1  Then find  (a/(a+1)) + ((2b)/(b+1)) + ((3c)/(c+1)) + ((4d)/(d+1))
$$\mathrm{If}\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}>\mathrm{0} \\ $$$$\mathrm{And}\:\:\frac{\mathrm{1}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{\mathrm{3}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{\mathrm{4}}{\mathrm{d}+\mathrm{1}}\:=\:\mathrm{1} \\ $$$$\mathrm{Then}\:\mathrm{find}\:\:\frac{\mathrm{a}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{\mathrm{2b}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{\mathrm{3c}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{\mathrm{4d}}{\mathrm{d}+\mathrm{1}} \\ $$
Answered by Rasheed.Sindhi last updated on 10/Jul/22
 determinant (((If  a,b,c,d>0_(And  (1/(a+1)) + (2/(b+1)) + (3/(c+1)) + (4/(d+1)) = 1_() ) )))   (a/(a+1)) + ((2b)/(b+1)) + ((3c)/(c+1)) + ((4d)/(d+1))   =(a/(a+1))−1 + ((2b)/(b+1))−2 + ((3c)/(c+1))−3 + ((4d)/(d+1))−4+10   =((−1)/(a+1)) + ((−2)/(b+1)) + ((−3)/(c+1)) + ((−4)/(d+1))+10   =−((1/(a+1)) + (2/(b+1)) + (3/(c+1)) + (4/(d+1)))+10  =−(1)+10=9
$$\begin{array}{|c|}{\underset{\underset{} {\mathrm{And}\:\:\frac{\mathrm{1}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{\mathrm{3}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{\mathrm{4}}{\mathrm{d}+\mathrm{1}}\:=\:\mathrm{1}}} {\mathrm{If}\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}>\mathrm{0}}}\\\hline\end{array} \\ $$$$\:\frac{\mathrm{a}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{\mathrm{2b}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{\mathrm{3c}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{\mathrm{4d}}{\mathrm{d}+\mathrm{1}} \\ $$$$\:=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{1}}−\mathrm{1}\:+\:\frac{\mathrm{2b}}{\mathrm{b}+\mathrm{1}}−\mathrm{2}\:+\:\frac{\mathrm{3c}}{\mathrm{c}+\mathrm{1}}−\mathrm{3}\:+\:\frac{\mathrm{4d}}{\mathrm{d}+\mathrm{1}}−\mathrm{4}+\mathrm{10} \\ $$$$\:=\frac{−\mathrm{1}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{−\mathrm{2}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{−\mathrm{3}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{−\mathrm{4}}{\mathrm{d}+\mathrm{1}}+\mathrm{10} \\ $$$$\:=−\left(\frac{\mathrm{1}}{\mathrm{a}+\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{b}+\mathrm{1}}\:+\:\frac{\mathrm{3}}{\mathrm{c}+\mathrm{1}}\:+\:\frac{\mathrm{4}}{\mathrm{d}+\mathrm{1}}\right)+\mathrm{10} \\ $$$$=−\left(\mathrm{1}\right)+\mathrm{10}=\mathrm{9} \\ $$
Commented by mr W last updated on 10/Jul/22
nice solution sir!
$${nice}\:{solution}\:{sir}! \\ $$
Commented by Rasheed.Sindhi last updated on 10/Jul/22
Thanks a lot sir!
$$\mathcal{T}{hanks}\:{a}\:{lot}\:{sir}! \\ $$
Commented by Shrinava last updated on 10/Jul/22
perfect professor thank you
$$\mathrm{perfect}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *