Menu Close

If-a-b-c-d-R-a-b-8-ab-c-d-23-ad-bc-28-cd-12-Find-a-2-b-2-c-2-d-2-




Question Number 107169 by ZiYangLee last updated on 09/Aug/20
If a,b,c,d∈R  a+b=8  ab+c+d=23  ad+bc=28  cd=12  Find a^2 +b^2 +c^2 +d^2 .
Ifa,b,c,dRa+b=8ab+c+d=23ad+bc=28cd=12Finda2+b2+c2+d2.
Commented by ZiYangLee last updated on 09/Aug/20
Anyone?
Anyone?
Answered by Her_Majesty last updated on 09/Aug/20
(1) a=8−b  −b^2 +8b+c+d=23  bc−bd+8d=28  cd=12  (2) d=23+b^2 −8b−c  2c(b−4)−b^3 +16b^2 −87b+184=28  (b^2 −8b−c+23)c=12  (3) c=((b^2 −12b+39)/2)  b^4 −16b^3 +94b^2 −240b+225=0  (b−5)^2 (b−3)^2 =0  b_1 =3 a_1 =5 c_1 =6 d_1 =2  b_2 =5 a_2 =3 c_2 =2 d_2 =6  a^2 +b^2 +c^2 +d^2 =74
(1)a=8bb2+8b+c+d=23bcbd+8d=28cd=12(2)d=23+b28bc2c(b4)b3+16b287b+184=28(b28bc+23)c=12(3)c=b212b+392b416b3+94b2240b+225=0(b5)2(b3)2=0b1=3a1=5c1=6d1=2b2=5a2=3c2=2d2=6a2+b2+c2+d2=74
Answered by 1549442205PVT last updated on 09/Aug/20
From the hypothesis we get    { ((a+b=8 (1))),((ab+c+d=23(2))),((ad+bc=28(3))),((cd=12(4))) :}  Replace (4) into (2)(3)we get   { ((ab+((12)/c)+c=23)),((((12a)/c)+bc=28)) :}⇔ { ((abc+c^2 +12=23c)),((12a+bc^2 =28c)) :}(5)  Substituting b=12−a into (5)we get   { (((8−a)ac+c^2 +12=23c)),((12a+(8−a)c^2 =28c)) :}⇔ { ((8ac−a^2 c+c^2 +12=23c(6))),((12a+8c^2 −ac^2 =28c(7))) :}  From (7)we have :a=((8c^2 −28c)/(c^2 −12))⇒a^2 =((64c^4 −448c^3 +784c^2 )/(c^4 −24c^2 +144))  Replace into (7) we obtain:  ((8c(8c^2 −28c))/(c^2 −12))−((c(64c^4 −448c^3 +784c^2 ))/(c^4 −24c^2 +144))+c^2 +12=23c  ⇔c^6 −12c^4 −144c^2 +1728+64c^5 −224c^4   −768c^3 +2688c^2 −64c^5 +448c^4 −784c^3   =23c^5 −552c^3 +3312c  ⇔c^6 −23c^5 +212c^4 −1000c^3 +2544c^2 −3312c+1728  =(c−2)^2 (c−3)(c−4)(c−6)^2 =0  ⇔c∈{2,3,4,6}⇒d∈{6,4,3,2}  ⇒a∈{3,4,4,5},b∈{5,4,4,3}  ⇒(a,b,c,d)∈{(3,5,2,6),(4,4,3,4),(4,4,4,3),(5,3,6,2)}  We find out two different values of  S= a^2 +b^2 +c^2 +d^2 being  S=4^2 +4^2 +3^2 +4^2 =57  and S=5^2 +3^2 +6^2 +2^2 =74
Fromthehypothesisweget{a+b=8(1)ab+c+d=23(2)ad+bc=28(3)cd=12(4)Replace(4)into(2)(3)weget{ab+12c+c=2312ac+bc=28{abc+c2+12=23c12a+bc2=28c(5)Substitutingb=12ainto(5)weget{(8a)ac+c2+12=23c12a+(8a)c2=28c{8aca2c+c2+12=23c(6)12a+8c2ac2=28c(7)From(7)wehave:a=8c228cc212a2=64c4448c3+784c2c424c2+144Replaceinto(7)weobtain:8c(8c228c)c212c(64c4448c3+784c2)c424c2+144+c2+12=23cc612c4144c2+1728+64c5224c4768c3+2688c264c5+448c4784c3=23c5552c3+3312cc623c5+212c41000c3+2544c23312c+1728=(c2)2(c3)(c4)(c6)2=0c{2,3,4,6}d{6,4,3,2}a{3,4,4,5},b{5,4,4,3}(a,b,c,d){(3,5,2,6),(4,4,3,4),(4,4,4,3),(5,3,6,2)}WefindouttwodifferentvaluesofS=a2+b2+c2+d2beingS=42+42+32+42=57andS=52+32+62+22=74
Commented by Her_Majesty last updated on 09/Aug/20
you are right... but I don′t fully understand  where/why I′m losing 2 solutions
youarerightbutIdontfullyunderstandwhere/whyImlosing2solutions

Leave a Reply

Your email address will not be published. Required fields are marked *