Menu Close

If-A-B-C-pi-Prove-that-cos-2A-cos-2B-cos2C-1-4cosAcos-Bcos-C-




Question Number 191474 by Spillover last updated on 24/Apr/23
If A+B+C=π  Prove that  cos 2A+cos 2B+cos2C+1=−4cosAcos Bcos C
$$\mathrm{If}\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{cos}\:\mathrm{2A}+\mathrm{cos}\:\mathrm{2B}+\mathrm{cos2C}+\mathrm{1}=−\mathrm{4cosAcos}\:\mathrm{Bcos}\:\mathrm{C} \\ $$$$ \\ $$
Commented by Tinku Tara last updated on 24/Apr/23
You probably need precondition  that A+B+C=π
$$\mathrm{You}\:\mathrm{probably}\:\mathrm{need}\:\mathrm{precondition} \\ $$$$\mathrm{that}\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi \\ $$
Answered by Spillover last updated on 25/Apr/23
2cos(A+B)cos (A−B)+2cos^2 C−1+1    A+B+C=π   A+B=π−C  2cos (π−C)cos (A−B)+2cos^2 C  2cos Ccos (A−B)+2cos^2 C  2cos C[cos (A−B)−cos C]  C=π−(A+B)  −2cos C[cos(A+B)+cos (A−B)]  −2cos C[2cosAcos B]  −4cos CcosAcos B
$$\mathrm{2cos}\left(\mathrm{A}+\mathrm{B}\right)\mathrm{cos}\:\left(\mathrm{A}−\mathrm{B}\right)+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{C}−\mathrm{1}+\mathrm{1} \\ $$$$\:\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi\:\:\:\mathrm{A}+\mathrm{B}=\pi−\mathrm{C} \\ $$$$\mathrm{2cos}\:\left(\pi−\mathrm{C}\right)\mathrm{cos}\:\left(\mathrm{A}−\mathrm{B}\right)+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{C} \\ $$$$\mathrm{2cos}\:\mathrm{Ccos}\:\left(\mathrm{A}−\mathrm{B}\right)+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{C} \\ $$$$\mathrm{2cos}\:\mathrm{C}\left[\mathrm{cos}\:\left(\mathrm{A}−\mathrm{B}\right)−\mathrm{cos}\:\mathrm{C}\right] \\ $$$$\mathrm{C}=\pi−\left(\mathrm{A}+\mathrm{B}\right) \\ $$$$−\mathrm{2cos}\:\mathrm{C}\left[\mathrm{cos}\left(\mathrm{A}+\mathrm{B}\right)+\mathrm{cos}\:\left(\mathrm{A}−\mathrm{B}\right)\right] \\ $$$$−\mathrm{2cos}\:\mathrm{C}\left[\mathrm{2cosAcos}\:\mathrm{B}\right] \\ $$$$−\mathrm{4cos}\:\mathrm{CcosAcos}\:\mathrm{B} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *