Menu Close

If-A-B-C-pi-Prove-that-cos-2A-cos-2B-cos2C-1-4cosAcos-Bcos-C-




Question Number 191474 by Spillover last updated on 24/Apr/23
If A+B+C=π  Prove that  cos 2A+cos 2B+cos2C+1=−4cosAcos Bcos C
IfA+B+C=πProvethatcos2A+cos2B+cos2C+1=4cosAcosBcosC
Commented by Tinku Tara last updated on 24/Apr/23
You probably need precondition  that A+B+C=π
YouprobablyneedpreconditionthatA+B+C=π
Answered by Spillover last updated on 25/Apr/23
2cos(A+B)cos (A−B)+2cos^2 C−1+1    A+B+C=π   A+B=π−C  2cos (π−C)cos (A−B)+2cos^2 C  2cos Ccos (A−B)+2cos^2 C  2cos C[cos (A−B)−cos C]  C=π−(A+B)  −2cos C[cos(A+B)+cos (A−B)]  −2cos C[2cosAcos B]  −4cos CcosAcos B
2cos(A+B)cos(AB)+2cos2C1+1A+B+C=πA+B=πC2cos(πC)cos(AB)+2cos2C2cosCcos(AB)+2cos2C2cosC[cos(AB)cosC]C=π(A+B)2cosC[cos(A+B)+cos(AB)]2cosC[2cosAcosB]4cosCcosAcosB

Leave a Reply

Your email address will not be published. Required fields are marked *