Menu Close

if-a-b-c-positive-real-numbers-and-a-1-a-b-1-b-c-1-c-1-prove-that-abc-1-8-




Question Number 151052 by mathdanisur last updated on 17/Aug/21
if   a;b;c   positive real numbers  and  (a/(1+a)) + (b/(1+b)) + (c/(1+c)) = 1   prove that:  abc ≤ (1/8)
$$\mathrm{if}\:\:\:\mathrm{a};\mathrm{b};\mathrm{c}\:\:\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}\:\:\mathrm{and} \\ $$$$\frac{\mathrm{a}}{\mathrm{1}+\mathrm{a}}\:+\:\frac{\mathrm{b}}{\mathrm{1}+\mathrm{b}}\:+\:\frac{\mathrm{c}}{\mathrm{1}+\mathrm{c}}\:=\:\mathrm{1}\:\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{abc}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Answered by dumitrel last updated on 18/Aug/21
3r+2q+p=1+p+q+r⇒2r+q=1  q^3 ≥27r^2 ⇒(1−2r)^3 ≥27r^2 ⇒  8r^3 +15r^2 +6r−1≤0⇒(8r−1)(r^2 +2r+1)≤0⇒r≤(1/8)
$$\mathrm{3}{r}+\mathrm{2}{q}+{p}=\mathrm{1}+{p}+{q}+{r}\Rightarrow\mathrm{2}{r}+{q}=\mathrm{1} \\ $$$${q}^{\mathrm{3}} \geqslant\mathrm{27}{r}^{\mathrm{2}} \Rightarrow\left(\mathrm{1}−\mathrm{2}{r}\right)^{\mathrm{3}} \geqslant\mathrm{27}{r}^{\mathrm{2}} \Rightarrow \\ $$$$\mathrm{8}{r}^{\mathrm{3}} +\mathrm{15}{r}^{\mathrm{2}} +\mathrm{6}{r}−\mathrm{1}\leqslant\mathrm{0}\Rightarrow\left(\mathrm{8}{r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +\mathrm{2}{r}+\mathrm{1}\right)\leqslant\mathrm{0}\Rightarrow{r}\leqslant\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Commented by mathdanisur last updated on 18/Aug/21
nice Ser thank you
$$\mathrm{nice}\:\mathrm{Ser}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *