Menu Close

if-a-b-gt-0-and-a-2-b-2-5-3-find-a-2-b-2-ab-




Question Number 89991 by jagoll last updated on 20/Apr/20
if a,b > 0 and (a^2 /b^2 ) = (5/3)  find ((a^2 +b^2 )/(ab))
$$\mathrm{if}\:\mathrm{a},\mathrm{b}\:>\:\mathrm{0}\:\mathrm{and}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:=\:\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\mathrm{find}\:\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }{\mathrm{ab}} \\ $$
Commented by john santu last updated on 20/Apr/20
ab = (√(a^2 b^2 )) , since a,b > 0  a^2 = (5/3)b^2  ⇒ab = (√((5b^4 )/3)) = ((b^2 (√(15)))/3)  then ((a^2 +b^2 )/(ab)) = (((8b^2 )/3)/((b^2 (√(15)))/3))  = (8/( (√(15))))
$${ab}\:=\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }\:,\:{since}\:{a},{b}\:>\:\mathrm{0} \\ $$$${a}^{\mathrm{2}} =\:\frac{\mathrm{5}}{\mathrm{3}}{b}^{\mathrm{2}} \:\Rightarrow{ab}\:=\:\sqrt{\frac{\mathrm{5}{b}^{\mathrm{4}} }{\mathrm{3}}}\:=\:\frac{{b}^{\mathrm{2}} \sqrt{\mathrm{15}}}{\mathrm{3}} \\ $$$${then}\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}}\:=\:\frac{\frac{\mathrm{8}{b}^{\mathrm{2}} }{\mathrm{3}}}{\frac{{b}^{\mathrm{2}} \sqrt{\mathrm{15}}}{\mathrm{3}}} \\ $$$$=\:\frac{\mathrm{8}}{\:\sqrt{\mathrm{15}}} \\ $$
Commented by mr W last updated on 20/Apr/20
((a/b))^2 =(5/3)  (a/b)=((√5)/( (√3)))  ((a^2 +b^2 )/(ab))=(a/b)+(b/a)=((√5)/( (√3)))+((√3)/( (√5)))=(8/( (√(15))))=((8(√(15)))/(15))
$$\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\frac{{a}}{{b}}=\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}}=\frac{{a}}{{b}}+\frac{{b}}{{a}}=\frac{\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{3}}}+\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{5}}}=\frac{\mathrm{8}}{\:\sqrt{\mathrm{15}}}=\frac{\mathrm{8}\sqrt{\mathrm{15}}}{\mathrm{15}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *